Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideyuki Yamawaki is active.

Publication


Featured researches published by Hideyuki Yamawaki.


Biochemical and Biophysical Research Communications | 2010

Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels.

Hideyuki Yamawaki; Naoya Tsubaki; Masashi Mukohda; Muneyoshi Okada; Yukio Hara

Omentin is a recently identified adipose tissue-derived cytokine and is implicated in obesity-related cardiovascular disorders. In the present study, we tested the hypothesis that omentin could directly affect vascular reactivity of isolated blood vessels. In endothelium-intact rat isolated aorta, pretreatment with omentin (300 ng/ml, 30 min) inhibited noradrenaline (NA; 1 nM-1 microM)-induced concentration-dependent contraction. In NA (100 nM)-pre-contracted aorta, omentin (1-300 ng/ml) directly induced an endothelium-dependent relaxation. While a nitric oxide (NO) synthase (NOS) inhibitor, N(G)-nitro-l-arginine methyl ester (100 microM, 30 min) inhibited the relaxation, a PI3K/Akt inhibitor, LY294002 (10 microM, 30 min) or a tyrosine kinase inhibitor, genistein (30 microM, 30 min) was ineffective. Omentin (300 ng/ml, 5 min) induced a phosphorylation of endothelial NOS at serine 1177 but not a phosphorylation of Akt at serine 473. Omentin (1-300 ng/ml) also relaxed NA pre-contracted mesenteric artery. Present study for the first time demonstrated that omentin has a vasodilating effect on isolated blood vessels, which is mediated through endothelium-derived NO.


European Journal of Pharmacology | 2012

Omentin plays an anti-inflammatory role through inhibition of TNF-α-induced superoxide production in vascular smooth muscle cells.

Kyosuke Kazama; Tatsuya Usui; Muneyoshi Okada; Yukio Hara; Hideyuki Yamawaki

Omentin is a recently identified adipocytokine and its effect in vasculature is largely unknown. Here we examined the effects of omentin on smooth muscle cells (SMCs) inflammatory states. Western blotting was performed to analyze inflammatory signal transduction in cultured SMCs. Phosphorylation of nuclear factor-κB (NF-κB), p38 and JNK, and expression of vascular cell adhesion molecule (VCAM)-1 and cyclooxygenase-2 were not induced by omentin (50-300ng/ml, 20min or 24h). On the other hand, tumor necrosis factor-α (TNF-α; 10ng/ml, 20min)-induced phosphorylation of p38 and JNK was significantly inhibited by omentin pretreatment in a concentration-dependent manner (50-300ng/ml, 30min). TNF-α (24h)-induced expression of VCAM-1 was also significantly inhibited by omentin pretreatment in a concentration-dependent manner. Both inhibitor of p38 (SB203580) and JNK (SP600125) significantly inhibited TNF-α-induced VCAM-1 expression. Omentin (300ng/ml, 30min) inhibited TNF-α (1h)-induced nicotinamide adenine dinucleotide phosphate oxidase activity as determined by lucigenin assay. An antioxidant drug, N-acetyl-l-cysteine significantly inhibited TNF-α-induced phosphorylation of p38 and JNK. Furthermore, omentin (300ng/ml, 30min) significantly inhibited TNF-α (24h)-induced monocytic cells adhesion to SMCs. In rat isolated thoracic aorta, omentin (300ng/ml, 30min) inhibited TNF-α (24h)-induced VCAM-1 expression. The present results demonstrate for the first time that omentin plays an anti-inflammatory role by preventing the TNF-α-induced VCAM-1 expression in SMCs. It is suggested that omentin inhibits TNF-α-induced VCAM-1 expression via preventing the activation of p38 and JNK at least in part through inhibition of superoxide production.


American Journal of Physiology-cell Physiology | 2008

Methylglyoxal mediates vascular inflammation via JNK and p38 in human endothelial cells

Hideyuki Yamawaki; Kazuaki Saito; Muneyoshi Okada; Yukio Hara

Methylglyoxal (MGO) is a reactive metabolite of glucose. Since the plasma concentration of MGO is increased in diabetic patients, MGO is implicated in diabetes-associated vascular endothelial cells (ECs) injury, which might be responsible for atherosclerosis. In the present study, we examined effects of treatment of human umbilical vein ECs with MGO on EC morphology and inflammatory responses. MGO (24 h) induced cytotoxic morphological changes in a concentration-dependent manner (0-420 microM). MGO induced mRNA and protein expression of cyclooxygenase (COX)-2 in a concentration (0-420 microM)- and time (6-24 h)-dependent manner. COX-2 induction was associated with increased PGE(2) release. Acute treatment with MGO (20 min) induced concentration-dependent (0-420 microM) activation of JNK and p38 MAP kinase but not ERK or NF-kappaB. Both the JNK inhibitor SP600125 and the p38 inhibitor SB203580 prevented the MGO induction of COX-2. However, inhibiting JNK and p38 or COX-2 was ineffective to the morphological damage by MGO (420 microM, 24 h). EUK134, a synthetic combined superoxide dismutase/catalase mimetic, had no effect on MGO-induced COX-2. Present results indicated that MGO mediates JNK- and p38-dependent EC inflammatory responses, which might be independent of oxidative stress. On the other hand, MGO-induced morphological cell damage seems unlikely to be associated with COX-2-PGE(2).


European Journal of Pharmacology | 2001

Hypoxia impairs endothelium-dependent relaxation in organ cultured pulmonary artery.

Takahisa Murata; Hideyuki Yamawaki; Masatoshi Hori; Koichi Sato; Hiroshi Ozaki; Hideaki Karaki

In intrapulmonary arteries cultured under hypoxic conditions (5% oxygen) for 7 days, endothelium-dependent relaxation and cGMP accumulation induced by substance P were decreased as compared to those of a normoxic control (20% oxygen). In rabbit mesenteric arteries exposed to chronic hypoxia, however, endothelial dysfunction was not observed. Furthermore, in endothelium-denuded pulmonary arteries exposed to hypoxia, neither relaxation nor cGMP accumulation due to sodium nitroprusside differed from those of the normoxic control. Hypoxia did not change the mRNA expression of endothelial NO synthase (eNOS), the protein expression of eNOS or the eNOS regulatory protein caveolin-1 as assessed by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) or whole-mount immunostaining. Morphological study revealed atrophy of endothelial cells and condensation of the eNOS protein in many cells. These results suggest that chronic hypoxia impaired NO-mediated arterial relaxation without changing either the eNOS protein expression or the NO-sensitivity of smooth muscle cells in pulmonary arteries. Changes in cell structure and organization may be involved in endothelial dysfunction.


American Journal of Physiology-heart and Circulatory Physiology | 2012

HDAC4 mediates development of hypertension via vascular inflammation in spontaneous hypertensive rats

Tatsuya Usui; Muneyoshi Okada; Wataru Mizuno; Mayuko Oda; Natsuki Ide; Tomoka Morita; Yukio Hara; Hideyuki Yamawaki

Histone deacetylases (HDACs) are transcriptional corepressors. Our recent study demonstrated that HDAC4 protein specifically increases in mesenteric artery from spontaneous hypertensive rats (SHR) compared with Wistar Kyoto rats (WKY). Vascular inflammation is important for pathogenesis of hypertension. We examined whether HDAC4 affects vascular inflammatory responses and promotes hypertension. In vivo, blood pressure, reactive oxygen species (ROS) production, and VCAM-1 expression in isolated mesenteric artery were elevated in young SHR (7 wk old) compared with age-matched WKY, which were prevented by long-term treatment of SHR with an HDACs inhibitor, trichostatin A (TSA; 500 μg·kg(-1)·day(-1) for 3 wk). In isolated mesenteric artery, the increased angiotensin II-induced contraction in SHR was reversed by TSA. The endothelium-dependent relaxation induced by ACh in SHR was augmented by TSA. In cultured rat mesenteric arterial smooth muscle cells (SMCs), expression of HDAC4 mRNA and protein was increased by TNF-α (10 ng/ml). TSA (10 μM, pretreatment for 30 min) inhibited VCAM-1 expression and NF-κB phosphorylation induced by TNF (10 ng/ml, 24 h or 20 min) in SMCs. HDAC4 small interfering RNA inhibited TNF-induced monocyte adhesion, VCAM-1 expression, transcriptional activity of NF-κB, and ROS production in SMCs. The present results demonstrated that proinflammatory effects of HDACs may mediate the further development of hypertension in SHR. It is also suggested in cultured vascular SMCs that TNF-induced HDAC4 mediates vascular inflammation likely via VCAM-1 induction through ROS-dependent NF-κB activation.


Acta Physiologica | 2013

Vaspin prevents methylglyoxal-induced apoptosis in human vascular endothelial cells by inhibiting reactive oxygen species generation

Sukanya Phalitakul; Muneyoshi Okada; Yukio Hara; Hideyuki Yamawaki

Vaspin (visceral adipose tissue‐derived serine protease inhibitor) is a novel adipocytokine found in visceral white adipose tissues of obese type 2 diabetic rats. We have previously shown that vaspin has anti‐inflammatory and antimigratory effects in vascular smooth muscle cells. Methylglyoxal (MGO) is an active metabolite of glucose and mediates diabetic vascular complications including endothelial cell (EC) apoptosis. Nonetheless, effects of vaspin on MGO‐induced apoptosis of vascular EC remain to be determined. We investigated the effects of vaspin on MGO‐induced apoptosis of human umbilical vein ECs (HUVECs).


Life Sciences | 2001

Chronic effect of doxorubicin on vascular endothelium assessed by organ culture study.

Takahisa Murata; Hideyuki Yamawaki; Ryo Yoshimoto; Masatoshi Hori; Koichi Sato; Hiroshi Ozaki; Hideaki Karaki

We have attempted to determine the chronic effects of doxorubicin, a commonly used anticancer agent, on vascular endothelium using an organ culture system. In rabbit mesenteric arteries treated with 0.3 microM doxorubicin for 7 days, rounding and concentrated nuclei and TUNEL-positive staining were observed in endothelial cells, indicating DNA damage and the induction of apoptosis. However, the endothelium-dependent relaxation induced by substance P and the expression of mRNA encoding endothelial NO synthase (eNOS) did not differ from those in control arteries. In arteries treated with a higher concentration (1 microM) of doxorubicin, apoptosis and damage to nuclei occurred in the endothelial cells at the third day of treatment, and the detachment and excoriation of endothelium from the tunica interna of the vascular wall were also observed. The impairment of endothelium-dependent relaxation was observed at the fifth day of the treatment with 1 microM doxorubicin. Additionally, apoptotic change in the smooth muscle layer was observed at this concentration of doxorubicin. Apoptotic phenomena were further confirmed by DNA fragmentation using isolated bovine aortic endothelial cells (BAECs) and A7r5 vascular smooth muscle cells, and it was revealed that BAECs are more sensitive than A7r5 to the apoptotic effect of doxorubicin. These results suggest that chronic treatment with doxorubicin at therapeutic concentrations induces apoptosis and excoriation of endothelial cells, which diminishes endothelium-dependent relaxation.


British Journal of Pharmacology | 2001

Chronic vascular toxicity of doxorubicin in an organ-cultured artery

Takahisa Murata; Hideyuki Yamawaki; Masatoshi Hori; Koichi Sato; Hiroshi Ozaki; Hideaki Karaki

We investigated the chronic effects of doxorubicin (DXR) on morphological and functional changes in the rabbit mesenteric artery using an organ culture system. In arteries cultured with 0.3 μM DXR for 7 days, the contractions induced by noradrenaline, but not those induced by endothelin‐1 or high K+, were strongly inhibited. This reaction was followed by a decrease in the induction of the α1A‐adrenoceptor without any change in the mRNA level. Inhibition of noradrenaline‐induced contractions by DXR was attenuated by superoxide dismutase, and α1A‐adrenoceptor protein expression recovered. In the arteries cultured with 1 μM DXR for 7 days, contractions induced by endothelin‐1 or high K+ and absolute force in the permeabilized muscles were also inhibited. Morphological examinations revealed the existence of concentrated nuclei and terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labelling (TUNEL)‐positive smooth muscle cells, and internucleosomal DNA fragmentation was also detected, indicating the induction of apoptosis. In the arteries cultured with 10 μM DXR for 7 days, nuclear swelling, karyolysis and random DNA fragmentation indicative of necrosis were observed, and muscle contractility was abolished. These results suggest that 0.3 μM DXR selectively down‐regulates the α1A‐adrenoceptor protein expression, resulting in a decrease in the noradrenaline‐induced contraction. This down‐regulation may be at least partly due to the production of a superoxide radical. DXR also caused a decrease in muscle contractility followed by apoptotic changes at 1 μM and necrotic changes at 10 μM. These changes might be responsible for the disturbance of the circulatory system that is often observed during the course of repetitive chemotherapy.


Hypertension | 2014

Histone Deacetylase 4 Controls Neointimal Hyperplasia via Stimulating Proliferation and Migration of Vascular Smooth Muscle Cells

Tatsuya Usui; Tomoka Morita; Muneyoshi Okada; Hideyuki Yamawaki

Histone deacetylases (HDACs) are transcriptional coregulators. Recently, we demonstrated that HDAC4, one of class IIa family members, promotes reactive oxygen species–dependent vascular smooth muscle inflammation and mediates development of hypertension in spontaneously hypertensive rats. Pathogenesis of hypertension is, in part, modulated by vascular structural remodeling via proliferation and migration of vascular smooth muscle cells (SMCs). Thus, we examined whether HDAC4 controls SMC proliferation and migration. In rat mesenteric arterial SMCs, small interfering RNA against HDAC4 inhibited platelet-derived growth factor (PDGF)-BB–induced SMC proliferation as determined by a cell counting and bromodeoxyuridine incorporation assay as well as migration as determined by Boyden chamber assay. Expression and activity of HDAC4 were increased by PDGF-BB. HDAC4 small interfering RNA inhibited phosphorylation of p38 mitogen–activated protein kinase and heat shock protein 27 and expression of cyclin D1 as measured by Western blotting. HDAC4 small interfering RNA also inhibited PDGF-BB–induced reactive oxygen species production as measured fluorometrically using 2′, 7′-dichlorofluorescein diacetate and nicotinamide adenine dinucleotide phosphate oxidase activity as measured by lucigenin assay. A Ca2+/calmodulin-dependent protein kinase II inhibitor, KN93, inhibited PDGF-BB–induced SMC proliferation and migration as well as phosphorylation of HDAC4. In vivo, a class IIa HDACs inhibitor, MC1568 prevented neointimal hyperplasia in mice carotid ligation model. MC1568 also prevented increased activation of HDAC4 in the neointimal lesions. The present results for the first time demonstrate that HDAC4 controls PDGF-BB–induced SMC proliferation and migration through activation of p38 mitogen–activated protein kinase/heat shock protein 27 signals via reactive oxygen species generation in a Ca2+/calmodulin-dependent protein kinase-dependent manner, which may lead to the neointimal hyperplasia in vivo.


Biochemical and Biophysical Research Communications | 2012

A novel adipocytokine, nesfatin-1 modulates peripheral arterial contractility and blood pressure in rats

Hideyuki Yamawaki; Minako Takahashi; Masashi Mukohda; Tomoka Morita; Muneyoshi Okada; Yukio Hara

Nesfatin-1 is a novel adipocytokine which exerts not only anorexigenic but also hypertensive roles through acting on hypothalamus melanocortin-3/4 receptors. Although it is logical to hypothesize that nesfatin-1 could also affect the contractile reactivity of peripheral blood vessels, it still remains to be examined. The present study was performed to test the hypothesis. In both endothelium-intact and -denuded mesenteric artery of rats, acute treatment with nesfatin-1 (10nM, 30min pretreatment) had no influence on the noradrenaline- and 5-hydroxytryptamine-induced concentration-dependent contractions. Chronic treatment of mesenteric artery with nesfatin-1 (10nM, 3days) using organ-culture method had also no influence on the agonists-induced contractions. In contrast, nesfatin-1 (10nM, 30min) significantly inhibited the sodium nitroprusside (SNP)-induced relaxations of smooth muscle in mesenteric artery. A membrane permeable cyclic GMP (cGMP) analog, 8-bromo-cGMP-induced relaxations were not affected by nesfatin-1. Consistently, the SNP-induced cGMP production in smooth muscle was impaired by nesfatin-1. Intravenous application of nesfatin-1 to rats not only increased blood pressure but also impaired the SNP-induced decreases in blood pressure. The present study for the first time reveals that nesfatin-1 affects peripheral arterial blood vessel and inhibits the nitric oxide donor-induced smooth muscle relaxations via impairing the cGMP production. The results are the first to demonstrate that nesfatin-1 modulates blood pressure through directly acting on peripheral arterial resistance.

Collaboration


Dive into the Hideyuki Yamawaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge