Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hien Quoc Ngo is active.

Publication


Featured researches published by Hien Quoc Ngo.


IEEE Transactions on Communications | 2013

Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems

Hien Quoc Ngo; Erik G. Larsson; Thomas L. Marzetta

A multiplicity of autonomous terminals simultaneously transmits data streams to a compact array of antennas. The array uses imperfect channel-state information derived from transmitted pilots to extract the individual data streams. The power radiated by the terminals can be made inversely proportional to the square-root of the number of base station antennas with no reduction in performance. In contrast if perfect channel-state information were available the power could be made inversely proportional to the number of antennas. Lower capacity bounds for maximum-ratio combining (MRC), zero-forcing (ZF) and minimum mean-square error (MMSE) detection are derived. An MRC receiver normally performs worse than ZF and MMSE. However as power levels are reduced, the cross-talk introduced by the inferior maximum-ratio receiver eventually falls below the noise level and this simple receiver becomes a viable option. The tradeoff between the energy efficiency (as measured in bits/J) and spectral efficiency (as measured in bits/channel use/terminal) is quantified for a channel model that includes small-scale fading but not large-scale fading. It is shown that the use of moderately large antenna arrays can improve the spectral and energy efficiency with orders of magnitude compared to a single-antenna system.


international conference on acoustics, speech, and signal processing | 2012

EVD-based channel estimation in multicell multiuser MIMO systems with very large antenna arrays

Hien Quoc Ngo; Erik G. Larsson

This paper considers multicell multiuser MIMO systems with very large antenna arrays at the base station. We propose an eigenvalue-decomposition-based approach to channel estimation, that estimates the channel blindly from the received data. The approach exploits the asymptotic orthogonality of the channel vectors in very large MIMO systems. We show that the channel to each user can be estimated from the covariance matrix of the received signals, up to a remaining scalar multiplicative ambiguity. A short training sequence is required to resolve this ambiguity. Furthermore, to improve the performance of our approach, we combine it with the iterative least-square with projection (ILSP) algorithm. Numerical results verify the effectiveness of our channel estimation approach.


IEEE Transactions on Communications | 2013

The Multicell Multiuser MIMO Uplink with Very Large Antenna Arrays and a Finite-Dimensional Channel

Hien Quoc Ngo; Erik G. Larsson; Thomas L. Marzetta

We consider multicell multiuser MIMO systems with a very large number of antennas at the base station (BS). We assume that the channel is estimated by using uplink training. We further consider a physical channel model where the angular domain is separated into a finite number of distinct directions. We analyze the so-called pilot contamination effect discovered in previous work, and show that this effect persists under the finite-dimensional channel model that we consider. In particular, we consider a uniform array at the BS. For this scenario, we show that when the number of BS antennas goes to infinity, the system performance under a finite-dimensional channel model with P angular bins is the same as the performance under an uncorrelated channel model with P antennas. We further derive a lower bound on the achievable rate of uplink data transmission with a linear detector at the BS. We then specialize this lower bound to the cases of maximum-ratio combining (MRC) and zero-forcing (ZF) receivers, for a finite and an infinite number of BS antennas. Numerical results corroborate our analysis and show a comparison between the performances of MRC and ZF in terms of sum-rate.


IEEE Journal on Selected Areas in Communications | 2014

Multipair Full-Duplex Relaying with Massive Arrays and Linear Processing

Hien Quoc Ngo; Himal A. Suraweera; Michail Matthaiou; Erik G. Larsson

We consider a multipair decode-and-forward relay channel, where multiple sources transmit simultaneously their signals to multiple destinations with the help of a full-duplex relay station. We assume that the relay station is equipped with massive arrays, while all sources and destinations have a single antenna. The relay station uses channel estimates obtained from received pilots and zero-forcing (ZF) or maximum-ratio combining/maximum-ratio transmission (MRC/MRT) to process the signals. To significantly reduce the loop interference effect, we propose two techniques: i) using a massive receive antenna array; or ii) using a massive transmit antenna array together with very low transmit power at the relay station. We derive an exact achievable rate expression in closed-form for MRC/MRT processing and an analytical approximation of the achievable rate for ZF processing. This approximation is very tight, particularly for a large number of relay station antennas. These closed-form expressions enable us to determine the regions where the full-duplex mode outperforms the half-duplex mode, as well as to design an optimal power allocation scheme. This optimal power allocation scheme aims to maximize the energy efficiency for a given sum spectral efficiency and under peak power constraints at the relay station and sources. Numerical results verify the effectiveness of the optimal power allocation scheme. Furthermore, we show that, by doubling the number of transmit/receive antennas at the relay station, the transmit power of each source and of the relay station can be reduced by 1.5 dB if the pilot power is equal to the signal power, and by 3 dB if the pilot power is kept fixed, while maintaining a given quality of service.


international conference on acoustics, speech, and signal processing | 2011

Analysis of the pilot contamination effect in very large multicell multiuser MIMO systems for physical channel models

Hien Quoc Ngo; Thomas L. Marzetta; Erik G. Larsson

We consider multicell multiuser MIMO systems with a very large number of antennas at the base station. We assume that the channel is estimated by using uplink training sequences, and we consider a physical channel model where the angular domain is separated into a finite number of directions. We analyze the so-called pilot contamination effect discovered in previous work, and show that this effect persists under the finite-dimensional channel model that we consider. We further derive closed-form bounds on the achievable rate of uplink data transmission with maximum-ratio combining, for a finite and an infinite number of base station antennas.


international conference on communications | 2013

Multi-pair amplify-and-forward relaying with very large antenna arrays

Himal A. Suraweera; Hien Quoc Ngo; Trung Quang Duong; Chau Yuen; Erik G. Larsson

We consider a multi-pair relay channel where multiple sources simultaneously communicate with destinations using a relay. Each source or destination has only a single antenna, while the relay is equipped with a very large antenna array. We investigate the power efficiency of this system when maximum ratio combining/maximal ratio transmission (MRC/MRT) or zero-forcing (ZF) processing is used at the relay. Using a very large array, the transmit power of each source or relay (or both) can be made inversely proportional to the number of relay antennas while maintaining a given quality-of-service. At the same time, the achievable sum rate can be increased by a factor of the number of source-destination pairs. We show that when the number of antennas grows to infinity, the asymptotic achievable rates of MRC/MRT and ZF are the same if we scale the power at the sources. Depending on the large scale fading effect, MRC/MRT can outperform ZF or vice versa if we scale the power at the relay.


IEEE Communications Letters | 2008

On the SEP of Cooperative Diversity with Opportunistic Relaying

Bappi Barua; Hien Quoc Ngo; Hyundong Shin

We analyze the exact symbol error probability (SEP) of cooperative diversity with opportunistic amplify-and-forward (AF) relaying. The benefit of this opportunism to the SEP is assessed by comparing with maximal ratio combining of orthogonal multiple AF relay transmissions.


IEEE Transactions on Vehicular Technology | 2013

Uplink Performance Analysis of Multicell MU-SIMO Systems With ZF Receivers

Hien Quoc Ngo; Michail Matthaiou; Trung Quang Duong; Erik G. Larsson

We consider the uplink of a multicell multiuser single-input multiple-output system (MU-SIMO), where the channel experiences both small- and large-scale fading. The data detection is done by using the linear zero-forcing technique, assuming the base station (BS) has perfect channel state information of all users in its cell. We derive new exact analytical expressions for the uplink rate, the symbol error rate (SER), and the outage probability per user, as well as a lower bound on the achievable rate. This bound is very tight and becomes exact in the large-number-of-antenna limit. We further study the asymptotic system performance in the regimes of high signal-to-noise ratio (SNR), large number of antennas, and large number of users per cell. We show that, at high SNRs, the system is interference limited, and hence, we cannot improve the system performance by increasing the transmit power of each user. Instead, by increasing the number of BS antennas, the effects of interference and noise can be reduced, thereby improving system performance. We demonstrate that, with very large antenna arrays at the BS, the transmit power of each user can be made inversely proportional to the number of BS antennas while maintaining a desired quality of service. Numerical results are presented to verify our analysis.


allerton conference on communication, control, and computing | 2013

Massive MU-MIMO downlink TDD systems with linear precoding and downlink pilots

Hien Quoc Ngo; Erik G. Larsson; Thomas L. Marzetta

We consider a massive MU-MIMO downlink time-division duplex system where a base station (BS) equipped with many antennas serves several single-antenna users in the same time-frequency resource. We assume that the BS uses linear precoding for the transmission. To reliably decode the signals transmitted from the BS, each user should have an estimate of its channel. In this work, we consider an efficient channel estimation scheme to acquire CSI at each user, called beamforming training scheme. With the beamforming training scheme, the BS precodes the pilot sequences and forwards to all users. Then, based on the received pilots, each user uses minimum mean-square error channel estimation to estimate the effective channel gains. The channel estimation overhead of this scheme does not depend on the number of BS antennas, and is only proportional to the number of users. We then derive a lower bound on the capacity for maximum-ratio transmission and zero-forcing precoding techniques which enables us to evaluate the spectral efficiency taking into account the spectral efficiency loss associated with the transmission of the downlink pilots. Comparing with previous work where each user uses only the statistical channel properties to decode the transmitted signals, we see that the proposed beamforming training scheme is preferable for moderate and low-mobility environments.


allerton conference on communication, control, and computing | 2011

Uplink power efficiency of multiuser MIMO with very large antenna arrays

Hien Quoc Ngo; Erik G. Larsson; Thomas L. Marzetta

A multiplicity of autonomous terminals simultaneously transmits data streams to a compact array of antennas. The array uses imperfect channel-state information derived from transmitted pilots to extract the individual data streams. The power radiated by the terminals can be made inversely proportional to the square-root of the number of base station antennas with no reduction in performance. In contrast if perfect channel-state information were available the power could be made inversely proportional to the number of antennas. A maximum-ratio combining receiver normally performs worse than a zero-forcing receiver. However as power levels are reduced, the cross-talk introduced by the inferior maximum-ratio receiver eventually falls below the noise level and this simple receiver becomes a viable option.

Collaboration


Dive into the Hien Quoc Ngo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michail Matthaiou

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Trung Quang Duong

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chung Duc Ho

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nam-Phong Nguyen

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge