Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hieu Pham Trung Nguyen is active.

Publication


Featured researches published by Hieu Pham Trung Nguyen.


Nano Letters | 2011

p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111).

Hieu Pham Trung Nguyen; Shaofei Zhang; Kai Cui; Xueguang Han; Saeed Fathololoumi; M. Couillard; Zetian Mi

Full-color, catalyst-free InGaN/GaN dot-in-a-wire light-emitting diodes (LEDs) were monolithically grown on Si(111) by molecular beam epitaxy, with the emission characteristics controlled by the dot properties in a single epitaxial growth step. With the use of p-type modulation doping in the dot-in-a-wire heterostructures, we have demonstrated the most efficient phosphor-free white LEDs ever reported, which exhibit an internal quantum efficiency of ∼56.8%, nearly unaltered CIE chromaticity coordinates with increasing injection current, and virtually zero efficiency droop at current densities up to ∼640 A/cm(2). The remarkable performance is attributed to the superior three-dimensional carrier confinement provided by the electronically coupled dot-in-a-wire heterostructures, the nearly defect- and strain-free GaN nanowires, and the significantly enhanced hole transport due to the p-type modulation doping.


Nano Letters | 2012

Controlling Electron Overflow in Phosphor-Free InGaN/GaN Nanowire White Light-Emitting Diodes

Hieu Pham Trung Nguyen; Kai Cui; Shaofei Zhang; Mehrdad Djavid; Andreas Korinek; Zetian Mi

We have investigated for the first time the impact of electron overflow on the performance of nanowire light-emitting diodes (LEDs) operating in the entire visible spectral range, wherein intrinsic white light emission is achieved from self-organized InGaN quantum dots embedded in defect-free GaN nanowires on a single chip. Through detailed temperature-dependent electroluminescence and simulation studies, it is revealed that electron leakage out of the device active region is primarily responsible for efficiency degradation in such nanowire devices, which in conjunction with the presence of nonradiative surface recombination largely determines the unique emission characteristics of nanowire light-emitting diodes. We have further demonstrated that electron overflow in nanowire LEDs can be effectively prevented with the incorporation of a p-doped AlGaN electron blocking layer, leading to the achievement of phosphor-free white light-emitting diodes that can exhibit for the first time virtually zero efficiency droop for injection currents up to ~2200 A/cm(2). This study also provides unambiguous evidence that Auger recombination is not the primary mechanism responsible for efficiency droop in GaN-based nanowire light-emitting diodes.


Nature Communications | 2014

Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting

M. G. Kibria; Songrui Zhao; Faqrul Alam Chowdhury; Qi Wang; Hieu Pham Trung Nguyen; Michel Trudeau; Hong Guo; Zetian Mi

Solar water splitting is one of the key steps in artificial photosynthesis for future carbon-neutral, storable and sustainable source of energy. Here we show that one of the major obstacles for achieving efficient and stable overall water splitting over the emerging nanostructured photocatalyst is directly related to the uncontrolled surface charge properties. By tuning the Fermi level on the nonpolar surfaces of gallium nitride nanowire arrays, we demonstrate that the quantum efficiency can be enhanced by more than two orders of magnitude. The internal quantum efficiency and activity on p-type gallium nitride nanowires can reach ~51% and ~4.0 mol hydrogen h(-1) g(-1), respectively. The nanowires remain virtually unchanged after over 50,000 μmol gas (hydrogen and oxygen) is produced, which is more than 10,000 times the amount of photocatalyst itself (~4.6 μmol). The essential role of Fermi-level tuning in balancing redox reactions and in enhancing the efficiency and stability is also elucidated.


ACS Nano | 2013

One-step overall water splitting under visible light using multiband InGaN/GaN nanowire heterostructures.

Golam Kibria; Hieu Pham Trung Nguyen; Kai Cui; Songrui Zhao; Dongping Liu; Hong Guo; Michel Trudeau; Suzanne Paradis; Abou-Rachid Hakima; Zetian Mi

The conversion of solar energy into hydrogen via water splitting process is one of the key sustainable technologies for future clean, storable, and renewable source of energy. Therefore, development of visible light-responsive and efficient photocatalyst material has been of immense interest, but with limited success. Here, we show that overall water splitting under visible-light irradiation can be achieved using a single photocatalyst material. Multiband InGaN/GaN nanowire heterostructures, decorated with rhodium (Rh)/chromium-oxide (Cr2O3) core-shell nanoparticles can lead to stable hydrogen production from pure (pH ∼ 7.0) water splitting under ultraviolet, blue and green-light irradiation (up to ∼560 nm), the longest wavelength ever reported. At ∼440-450 nm wavelengths, the internal quantum efficiency is estimated to be ∼13%, the highest value reported in the visible spectrum. The turnover number under visible light well exceeds 73 in 12 h. Detailed analysis further confirms the stable photocatalytic activity of the nanowire heterostructures. This work establishes the use of metal-nitrides as viable photocatalyst for solar-powered artificial photosynthesis for the production of hydrogen and other solar fuels.


Nano Letters | 2013

Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode

Bandar AlOtaibi; Hieu Pham Trung Nguyen; Songrui Zhao; M. G. Kibria; S. Fan; Zetian Mi

We report on the first demonstration of stable photoelectrochemical water splitting and hydrogen generation on a double-band photoanode in acidic solution (hydrogen bromide), which is achieved by InGaN/GaN core/shell nanowire arrays grown on Si substrate using catalyst-free molecular beam epitaxy. The nanowires are doped n-type using Si to reduce the surface depletion region and increase current conduction. Relatively high incident-photon-to-current-conversion efficiency (up to ~27%) is measured under ultraviolet and visible light irradiation. Under simulated sunlight illumination, steady evolution of molecular hydrogen is further demonstrated.


Nano Letters | 2013

Breaking the Carrier Injection Bottleneck of Phosphor-Free Nanowire White Light-Emitting Diodes

Hieu Pham Trung Nguyen; Shaofei Zhang; Ashfiqua T. Connie; Golam Kibria; Qi Wang; Ishiang Shih; Zetian Mi

We have examined the carrier injection process of axial nanowire light-emitting diode (LED) structures and identified that poor carrier injection efficiency, due to the large surface recombination, is the primary cause for the extremely low output power of phosphor-free nanowire white LEDs. We have further developed InGaN/GaN/AlGaN dot-in-a-wire core-shell white LEDs on Si substrate, which can break the carrier injection efficiency bottleneck, leading to a massive enhancement in the output power. At room temperature, the devices can exhibit an output power of ~1.5 mW, which is more than 2 orders of magnitude stronger than nanowire LEDs without shell coverage. Additionally, such phosphor-free nanowire white LEDs can deliver an unprecedentedly high color rendering index of ~92-98 in both the warm and cool white regions, with the color rendering capability approaching that of an ideal light source, i.e. a blackbody.


IEEE Journal of Selected Topics in Quantum Electronics | 2011

InN p-i-n Nanowire Solar Cells on Si

Hieu Pham Trung Nguyen; Yi Lu Chang; Ishiang Shih; Zetian Mi

In this paper, we report the first experimental demonstration of InN nanowire solar cells. By employing an in situ deposited In seeding layer, we have achieved electronically pure, nearly intrinsic InN nanowires directly on Si(1 1 1) substrates by molecular beam epitaxy. The growth and characterization of Si- and Mg-doped InN nanowires is also investigated, which can exhibit superior structural and optical properties. We have further studied the epitaxial growth, fabrication, and characterization of InN:Si/i-InN and InN:Mg/i-InN/InN:Si axial nanowire structures on p-type and n-type Si(1 1 1) substrates, respectively. With the use of a CdS surface passivation, InN:Mg/i-InN/InN:Si nanowire homojunction solar cells exhibit a promising short-circuit current density of ~14.4 mA/cm2 and power-conversion efficiency of ~0.68% under simulated one-sun (AM 1.5G) illumination. This work suggests the first successful demonstration of p-type doping in InN nanowires and also constitutes important progress for the development of InGaN-based, full-solar-spectrum photovoltaics.


Nanotechnology | 2011

Full-color InGaN/GaN dot-in-a-wire light emitting diodes on silicon

Hieu Pham Trung Nguyen; Kai Cui; Shaofei Zhang; Saeed Fathololoumi; Zetian Mi

We report on the achievement of a new class of nanowire light emitting diodes (LEDs), incorporating InGaN/GaN dot-in-a-wire nanoscale heterostructures grown directly on Si(111) substrates. Strong emission across nearly the entire visible wavelength range can be realized by varying the dot composition. Moreover, we have demonstrated phosphor-free white LEDs by controlling the indium content in the dots in a single epitaxial growth step. Such devices can exhibit relatively high internal quantum efficiency (>20%) and no apparent efficiency droop for current densities up to ~ 200 A cm(-2).


Nanotechnology | 2012

Temperature-dependent nonradiative recombination processes in GaN-based nanowire white-light-emitting diodes on silicon.

Hieu Pham Trung Nguyen; Mehrdad Djavid; Kai Cui; Zetian Mi

In this paper, we have performed a detailed investigation of the temperature- and current-dependent emission characteristics of nanowire light-emitting diodes, wherein InGaN/GaN dot-in-a-wire nanoscale heterostructures and a p-doped AlGaN electron blocking layer are incorporated in the devices active region to achieve white-light emission and to prevent electron overflow, respectively. Through these studies, the Auger coefficient is estimated to be in the range of ∼10(-34) cm(6) s(-1) or less, which is nearly four orders of magnitude smaller than the commonly reported values of planar InGaN/GaN heterostructures, suggesting Auger recombination plays an essentially negligible role in the performance of GaN-based nanowire light-emitting diodes. It is observed, however, that the performance of such nanowire LEDs suffers severely from Shockley-Read-Hall recombination, which can account for nearly 40% of the total carrier recombination under moderate injection conditions (∼100 A cm(-2)) at room temperature. The Shockley-Read-Hall nonradiative lifetime is estimated to be in the range of a few nanoseconds at room temperature, which correlates well with the surface recombination velocity of GaN and the wire diameters used in this experiment.


Nanotechnology | 2013

High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode

B. AlOtaibi; M Harati; S. Fan; Songrui Zhao; Hieu Pham Trung Nguyen; M. G. Kibria; Zetian Mi

We have studied the photoelectrochemical properties of both undoped and Si-doped GaN nanowire arrays in 1 mol l(-1) solutions of hydrogen bromide and potassium bromide, which were used separately as electrolytes. It is observed that variations of the photocurrent with bias voltage depend strongly on the n-type doping in GaN nanowires in both electrolytes, which are analyzed in the context of GaN surface band bending and its variation with the incorporation of Si-doping. Maximum incident-photon-to-current-conversion efficiencies of ~15% and 18% are measured for undoped and Si-doped GaN nanowires under ~350 nm light illumination, respectively. Stable hydrogen generation is also observed at a zero bias potential versus the counter-electrode.

Collaboration


Dive into the Hieu Pham Trung Nguyen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moab Rajan Philip

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge