Hilal Torul
Gazi University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hilal Torul.
Journal of Colloid and Interface Science | 2013
Vinod Kumar Gupta; Necip Atar; Mehmet Lütfi Yola; Merve Eryilmaz; Hilal Torul; Ugur Tamer; Ismail Hakki Boyaci; Zafer Üstündağ
This study represents a novel template demonstration of a glucose biosensor based on mercaptophenyl boronic acid (MBA) terminated Ag@AuNPs/graphene oxide (Ag@AuNPs-GO) nanomaterials. The nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) method. The TEM image shows that Ag@AuNPs in the nanocomposite is in the range of diameters of 10-20 nm. The nanocomposite was used for the determination of glucose through the complexation between boronic acid and diol groups of glucose. Thus, a novel glucose biosensor was further fabricated by immobilizing glucose oxidase (GOD) into MBA terminated Ag@AuNPs-GO nanocomposite film (MBA-Ag@AuNPs-GO). The linearity range of glucose was obtained as 2-6mM with detection limit of 0.33 mM. The developed biosensor was also applied successfully for the determination of glucose in blood samples. The concentration value of glucose in blood samples was calculated to be 1.97±0.002 mM from measurements repeated for six times.
Analytical Chemistry | 2012
Erhan Temur; Adem Zengin; Ismail Hakki Boyaci; Fahriye Ceyda Dudak; Hilal Torul; Ugur Tamer
In this report, we present a new homogeneous detection method for staphylococcal enterotoxin B (SEB) utilizing core-shell-structured iron-gold magnetic nanoparticles and a gold nanorod surface-enhanced Raman scattering (SERS) probe in solution. Peptide ligand (aptamer) functionalized magnetic gold nanorod particles were used as scavengers for target SEB. After the SEB molecules were separated from the matrix, the sandwich assay procedure was tested by gold nanorod particles that act as SERS probes. The binding constant between SEB and peptide-nanoparticle complex was determined as 8.0 × 10(7) M(-1). The correlation between the SEB concentration and SERS signal was found to be linear within the range of 2.5 fM to 3.2 nM. The limit of detection for the homogeneous assay was determined as 224 aM (ca. 2697 SEB molecules/20 μL sample volume). Also, gold-coated surfaces were used as capture substrates and performances of the two methods were compared. Furthermore, the developed method was evaluated for investigating the SEB specificity on bovine serum albumin (BSA) and avidin and detecting SEB in artificially contaminated milk, blood, and urine.
Analytical Methods | 2014
Hilal Torul; Hakan Çiftçi; Fahriye Ceyda Dudak; Yekbun Adiguzel; Haluk Kulah; Ismail Hakki Boyaci; Ugur Tamer
In this report, we present a new detection method for blood glucose, using gold nanorod SERS, a surface enhanced Raman scattering probe embedded in two component self-assembled monolayers (SAMs). Gold nanorod particles and a gold coated slide surface were modified with the two component SAMs consisting of 3-mercaptophenylboronic acid (3-MBA) and 1-decanethiol (1–DT). The immobilization of 3-MBA/1-DT surface-functionalized gold nanoparticles onto 3-MBA/1-DT modified gold-coated slide surfaces was achieved by the cooperation of hydrophobic forces. Two component SAM functionalized substrates were used as SERS probes, by means of the boronic acid and the alkyl spacer functional groups that serve as the molecular recognition and penetration agents, respectively. The SERS platform surface was characterized by cyclic voltammetry, contact angle measurements, AFM (atomic force microscopy) and Raman spectroscopy. Optimum values of the parameters such as pH, time and (3-MBA/1-DT) molar ratio were also examined for the glucose determination. The analytical performance was evaluated and linear calibration graphs were obtained in the glucose concentration range of 2–16 mM, which is also in the range of the blood glucose levels, and the detection limit was found to be 0.5 mM. As a result, the SERS platform was also used for the determination of glucose in plasma samples.
Journal of Dairy Science | 2015
B. Er Demirhan; Burak Demirhan; C. Sönmez; Hilal Torul; Ugur Tamer; Gülderen Yentür
The aim of present study was to determine the levels of potential 5-hydroxymethyl-2-furaldehyde (HMF) and 2-furaldehyde (F) in 109 baby food samples (60 follow-on milks, 49 cereal- and milk-based infant formulas) obtained from different markets in Ankara (Turkey). Potential HMF and F compounds were determined by HPLC. Mean levels (± standard error) of HMF and F of follow-on milk samples were found to be 237.85±18.25 and 9.44±0.39 µg/100mL, respectively. Regarding the infant formulas, mean levels of HMF and F were found to be 905.41±91.94 and 13.22±1.21 µg/100g. As a result, potential HMF was determined in all of the samples; potential F was determined in all the samples except 1. The mean levels of potential HMF and F of infant formulas were higher than mean levels of potential HMF and F of follow-on milks. In addition, HMF and F values of some samples with an imminent expiration date were found to be higher than HMF and F values of the other samples. At present, no limits have been established in the Turkish Food Codex (TFC) for furfural compounds concentrations in infant formula and milks. Establishing limits related to these compounds would be important for protecting the quality of infant foods.
Food Additives & Contaminants Part B-surveillance | 2015
Buket Er Demirhan; Burak Demirhan; Ceren Sönmez; Hilal Torul; Ugur Tamer; Gülderen Yentür
In this survey monosodium glutamate (MSG) levels in chicken and beef stock cube samples were determined. A total number of 122 stock cube samples (from brands A, B, C, D) were collected from local markets in Ankara, Turkey. High-performance liquid chromatography with diode array detection (HPLC-DAD) was used for quantitative MSG determination. Mean MSG levels (±SE) in samples of A, B, C and D brands were 14.6 ± 0.2 g kg−1, 11.9 ± 0.3 g kg−1, 9.7 ± 0.1 g kg−1 and 7.2 ± 0.1 g kg−1, respectively. Differences between mean levels of brands were significant. Also, mean levels of chicken stock cube samples were lower than in beef stock cubes. Maximum limits for MSG in stock cubes are not specified in the Turkish Food Codex (TFC). Generally the limit for MSG in foods (except some foods) is established as 10 g kg−1 (individually or in combination).
European Journal of Dentistry | 2016
Hüma Ömürlü; Hacer Deniz Arisu; Evrim Eliguzeloglu Dalkilic; Ugur Tamer; Hilal Torul
Objective: The purpose of the current study was to determine the amount of urethane dimethacrylate (UDMA), bisphenol A-glycidyl methacrylate (Bis-GMA), poly (ethylene glycol) dimethacrylate (PEGDMA), bisphenol A ethoxylated dimethacrylate (Bis-EMA), and 2-hydroxyethyl methacrylate (HEMA) eluted from resin-based root canal sealer, epiphany, using high-performance liquid chromatography (HPLC). Materials and Methods: Epiphany was placed into the plastic molds and light-cured with a light emitting diode. After the curing process, each specimen in the first group (n = 12) was immersed in Eppendorf tubes containing a phosphate-buffered saline solution (PBS) and incubated for 45 s. In the second group, each specimen (n = 12) was immersed in Eppendorf tubes containing PBS and incubated for 24 h. Of the specimen extracts, 100 μL were subjected to HPLC. Analysis of data was accomplished with one-way analysis of variance (P < 0.05). Results: All of the samples eluted HEMA, UDMA, Bis-GMA, PEGDMA, and Bis-EMA. A significant difference was determined between the time periods of HEMA, UDMA, PEGDMA, and Bis-EMA (P < 0.05). Conclusion: The results of the current study showed that Epiphany releases HEMA, UDMA, Bis-GMA, PEGDMA, and Bis-EMA in both time periods.
Analytical and Bioanalytical Chemistry | 2015
Hilal Torul; Hakan Çiftçi; Demet Cetin; Zekiye Suludere; Ismail Hakki Boyaci; Ugur Tamer
Reactive & Functional Polymers | 2011
Ugur Tamer; Çiğdem Kanbeş; Hilal Torul; Nusret Ertaş
International journal of electrochemistry | 2011
Ugur Tamer; Ali İhsan Seçkin; Erhan Temur; Hilal Torul
Journal of Raman Spectroscopy | 2015
Mehmet Gokhan Caglayan; Hilal Torul; Feyyaz Onur; Ugur Tamer