Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hilal Turkoglu Sasmazel is active.

Publication


Featured researches published by Hilal Turkoglu Sasmazel.


International Journal of Biological Macromolecules | 2011

Novel hybrid scaffolds for the cultivation of osteoblast cells.

Hilal Turkoglu Sasmazel

In this study, natural biodegradable polysaccharide, chitosan, and synthetic biodegradable polymer, poly(ɛ-caprolactone) (PCL) were used to prepare 3D, hybrid polymeric tissue scaffolds (PCL/chitosan blend and PCL/chitosan/PCL layer by layer scaffolds) by using the electrospinning technique. The hybrid scaffolds were developed through HA addition to accelerate osteoblast cell growth. Characteristic examinations of the scaffolds were performed by micrometer, SEM, contact angle measurement system, ATR-FTIR, tensile machine and swelling experiments. The thickness of all electrospun scaffolds was determined in the range of 0.010±0.001-0.012±0.002 mm. In order to optimize electrospinning processes, suitable bead-free and uniform scaffolds were selected by using SEM images. Blending of PCL with chitosan resulted in better hydrophilicity for the PCL/chitosan scaffolds. The characteristic peaks of PCL and chitosan in the blend and layer by layer nanofibers were observed. The PCL/chitosan/PCL layer by layer structure had higher elastic modulus and tensile strength values than both individual PCL and chitosan structures. The layer by layer scaffolds exhibited the PBS absorption values of 184.2; 197.2% which were higher than those of PCL scaffolds but lower than those of PCL/chitosan blend scaffolds. SaOs-2 osteosarcoma cell culture studies showed that the highest ALP activities belonged to novel PCL/chitosan/PCL layer by layer scaffolds meaning better cell differentiation on the surfaces.


International Journal of Biological Macromolecules | 2016

Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds.

Seda Surucu; Hilal Turkoglu Sasmazel

This study was related to combining of synthetic Poly (ε-caprolactone) (PCL) and natural chitosan polymers to develop three dimensional (3D) PCL/chitosan core-shell scaffolds for tissue engineering applications. The scaffolds were fabricated with coaxial electrospinning technique and the characterizations of the samples were done by thickness and contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS) analyses, mechanical and PBS absorption and shrinkage tests. The average inter-fiber diameter values were calculated for PCL (0.717±0.001μm), chitosan (0.660±0.007μm) and PCL/chitosan core-shell scaffolds (0.412±0.003μm), also the average inter-fiber pore size values exhibited decreases of 66.91% and 61.90% for the PCL and chitosan scaffolds respectively, compared to PCL/chitosan core-shell ones. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. The cell culture studies (MTT assay, Confocal Laser Scanning Microscope (CLSM) and SEM analyses) carried out with L929 ATCC CCL-1 mouse fibroblast cell line proved that the biocompatibility performance of the scaffolds. The obtained results showed that the created micro/nano fibrous structure of the PCL/chitosan core-shell scaffolds in this study increased the cell viability and proliferation on/within scaffolds.


Journal of Biomaterials Science-polymer Edition | 2009

Water/O2-Plasma-Assisted Treatment of PCL Membranes for Biosignal Immobilization

Hilal Turkoglu Sasmazel; Sorin Manolache; Menemşe Gümüşderelioğlu

The main purpose of this study was to obtain COOH functionalities on the surface of poly-ε-caprolactone (PCL) membranes using low-pressure water/O2-plasma-assisted treatment. PCL membranes were prepared using the solvent-casting technique. Then, low-pressure water/O2 plasma treatments were performed in a cylindrical, capacitively coupled RF-plasma-reactor in three steps: H2O/O2-plasma treatment; in situ (oxalyl chloride vapors) gas/solid reaction to convert –OH functionalities into –COCl groups; and hydrolysis for final –COOH functionalities. Optimization of plasma modification processes was done using the DoE software program. COOH and OH functionalities on modified surfaces were detected quantitatively using the fluorescent labeling technique and an UVX 300G sensor. Chemical structural information of untreated, plasma treated and oxalyl chloride functionalized PCL membranes were acquired using pyrolysis GC/MS and ESCA analysis. High-resolution AFM images revealed that nanopatterns were more affected than micropatterns by plasma treatments. AFM images recorded with amino-functionalized tips presented increased size of the features on the surface that suggests higher density of the carboxyls on the nanotopographical elements. Low-pressure water/O2-plasma-treated and oxalyl chloride functionalized samples were biologically activated with insulin and/or heparin biosignal molecules using a PEO (polyoxyethylene bis amine) spacer. The success of the immobilization process was checked qualitatively by ESCA analysis. In addition, fluorescent labeling techniques were used for the quantitative determination of immobilized biomolecules. Cell-culture experiments indicated that biomolecule immobilization onto PCL scaffolds was effective on L929 cell adhesion and proliferation, especially in the presence of heparin.


Journal of Bioactive and Compatible Polymers | 2012

Macroporous silicone biomaterials with modified surface chemistry: Production and characterization

Zeynep A Gencer; Sedat Odabas; Hilal Turkoglu Sasmazel; Erhan Pişkin

Porous and bioactive silicone biomaterials were developed for soft and cartilage tissue repair. A protocol, using compression molding, salt extraction, and supercritical carbon dioxide treatments, was used to obtain disk-shaped materials with specific pore sizes and morphologies by changing the process conditions. Highly open/interconnected macroporous silicone matrices, with an average pore size of 250–300 µm and porosities in the range of 60%–70%, were obtained by the extracting the NaCl particles. Subsequent treatment with supercritical carbon dioxide slightly decreased the average pore size but increased the porosity to 80%. The supercritical carbon dioxide treatment effectively removed the entrapped salt crystals from the silicone matrix that improved interconnectivity. The compression modulus decreased, while the compression strength was increased using this technique. The surfaces and pores of the silicone materials were modified by silanization to provide primary amine groups for cell attachment, proliferation, migration, and three-dimensional growth of model L929 fibroblast cells.


Journal of Biomaterials Science-polymer Edition | 2016

DBD atmospheric plasma-modified, electrospun, layer-by-layer polymeric scaffolds for L929 fibroblast cell cultivation.

Seda Surucu; Hilal Turkoglu Sasmazel

Abstract This paper reported a study related to atmospheric pressure dielectric barrier discharge (DBD) Ar + O2 and Ar + N2 plasma modifications to alter surface properties of 3D PCL/Chitosan/PCL layer-by-layer hybrid scaffolds and to improve mouse fibroblast (L929 ATCC CCL-1) cell attachment, proliferation, and growth. The scaffolds were fabricated using electrospinning technique and each layer was electrospun sequentially on top of the other. The surface modifications were performed with an atmospheric pressure DBD plasma under different gas flow rates (50, 60, 70, 80, 90, and 100 sccm) and for different modification times (0.5–7 min), and then the chemical and topographical characterizations of the modified samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), atomic force microscopy, and X-ray photoelectron spectroscopy. The samples modified with Ar + O2 plasma for 1 min under 70 cm3/min O2 flow rate (71.077° ± 3.578) showed a 18.83% decrease compare to unmodified samples’ CA value (84.463° ± 3.864). Comparing with unmodified samples, the average fiber diameter values for plasma-modified samples by Ar + O2 (1 min 70 sccm) and Ar + N2 (40 s 70 sccm) increased 40.756 and 54.295%, respectively. Additionally, the average inter-fiber pore size values exhibited decrease of 37.699 and 48.463% for the same Ar + O2 and Ar + N2 plasma-modified samples, respectively, compare to unmodified samples. Biocompatibility performance was determined with MTT assay, fluorescence, Giemsa, and confocal imaging as well as SEM. The results showed that Ar + O2-based plasma modification increased the hydrophilicity and oxygen functionality of the surface, thus affecting the cell viability and proliferation on/within scaffolds.


Nanomaterials | 2018

Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications

Adriane Cherpinski; Melike Gozutok; Hilal Turkoglu Sasmazel; Sergio Torres-Giner; Jose M. Lagaron

This paper reports on the development and characterization of oxygen scavenging films made of poly(3-hydroxybutyrate) (PHB) containing palladium nanoparticles (PdNPs) prepared by electrospinning followed by annealing treatment at 160 °C. The PdNPs were modified with the intention to optimize their dispersion and distribution in PHB by means of two different surfactants permitted for food contact applications, i.e., hexadecyltrimethylammonium bromide (CTAB) and tetraethyl orthosilicate (TEOS). Analysis of the morphology and characterization of the chemical, thermal, mechanical, and water and limonene vapor barrier properties and the oxygen scavenging capacity of the various PHB materials were carried out. From the results, it was seen that a better dispersion and distribution was obtained using CTAB as the dispersing aid. As a result, the PHB/PdNP nanocomposites containing CTAB provided also the best oxygen scavenging performance. These films offer a significant potential as new active coating or interlayer systems for application in the design of novel active food packaging structures.


International Journal of Polymeric Materials | 2017

Hybrid Polymeric Scaffolds Prepared by Micro and Macro Approaches

Ozan Ozkan; Hilal Turkoglu Sasmazel

ABSTRACT Polymeric scaffolds with complex porous structures were fabricated with two different polymers by combining three fabrication methods in three steps, in which, nonwoven poly(ε-caprolactone) microfibers were obtained with electrospinning and immersed in solvent cast chitosan solution poured in Petri dish to fabricate hybrid polymers, and finally the combined structure was freeze-dried with two different predrying techniques to obtain macropores in the structure. The resulting hybrid polymeric mats were found to have both microfibers and macroporosity due to the electrospinning as well as freeze-drying processes, which resemble the natural extracellular matrix. The optimized scaffolds that predried in the incubator at 40°C for 5 h and then freeze-dried for 24 h exhibited contact angle value of 68.93 ± 2.18° with 3.252 ± 0.783 MPa Young’s modulus and 0.260 ± 0.002 MPa yield strength as well as 1.35-fold cell yield in MRC5 fibroblast cell culture, compared to the commercial tissue culture polystyrene. GRAPHICAL ABSTRACT


Journal of Nanoscience and Nanotechnology | 2018

Antibacterial Performance of PCL-Chitosan Core-Shell Scaffolds.

Ozan Ozkan; Hilal Turkoglu Sasmazel

In this study, antibacterial performance of the coaxially electrospun Poly-ε-caprolactone (PCL)-chitosan core-shell scaffolds developed, optimized and identified physically and chemically in our previous study, were evaluated for the suitability in wound healing applications. The aim of utilizing a core-shell fibrous scaffold with PCL as core and chitosan as shell was to combine natural biocompatibility, biodegradability and antibacterial properties of chitosan with mechanical properties and resistance to enzymatic degradation of PCL. The scaffolds were prepared with the optimized parameters, obtained from our previous study. Thickness and contact angle measurements as well as Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analyses confirmed repeated fabrication of PCL-chitosan core-shell scaffolds. In this study, assays specific to wound dressing materials, such as water vapor transmission rate (WVTR), in vitro degradability and antibacterial tests were carried out. WVTR value of PCL-chitosan core-shell scaffolds was higher (2315 ± 3.4 g/m2 · day) compared to single PCL scaffolds (1654 ± 3.2 g/m2 · day) due to the higher inter-fiber pore size. Additionally, in vitro degradability assays showed that the susceptibility of chitosan to enzymatic degradation can be significantly improved by hybridization with more resistant PCL while still keeping the scaffold to be considered as biodegradable. Finally, inhibition ratio and inhibition zone measurements showed that the PCL-chitosan core-shell polymeric scaffolds had significant antibacterial performance (52.860 ± 2.298% and 49.333 ± 0.719% inhibition ratios; 13.975 ± 0.124 mm and 12.117 ± 0.133 mm clear inhibition zones, against E. coli and S. aureus, respectively), close to the native chitosan. Therefore, the developed scaffolds can be considered as suitable candidates for biodegradable wound dressing applications.


Journal of the Australian Ceramic Society | 2018

Production of the novel fibrous structure of poly(ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering

Burak Ozbek; Barkın Erdogan; Nazmi Ekren; Faik N. Oktar; Sibel Akyol; Besim Ben-Nissan; Hilal Turkoglu Sasmazel; Cevriye Kalkandelen; Ayhan Mergen; Serap Erdem Kuruca; Gunes Ozen; Oguzhan Gunduz

Nanofibrous composites of the poly(ε-caprolactone) (PCL), tricalcium phosphate (TCP), and hexagonal boron nitride (h-BN) with different compositions were manufactured by using an economical and non-complicated method called electrospinning. Produced fibrous structures showed no bead formation and had a clean surface. Characterization of the composites showed that particles were successfully mixed with polymer phase. High cell activity of SaOS-2 cells on the composites was observed with SEM images. In addition, fibrous scaffolds are biocompatible with human bone tissue and are highly degradable.


Journal of Nanoscience and Nanotechnology | 2018

Development of Antibacterial Composite Electrospun Chitosan-Coated Polypropylene Materials

Melike Gozutok; Ahmet Ozan Basar; Hilal Turkoglu Sasmazel

In this study, a natural antibacterial substance chitosan was coated with/without potassium sorbate (KS) (0.8% (w/w) of KS, 8% (w/v) chitosan) onto the polypropylene (PP) film by using electrospinning technique to obtain novel antibacterial composite materials for various applications such as wound dressing, tissue engineering, drug delivery and food packaging. Atmospheric pressure plasma surface treatment was applied onto polypropylene films in order to increase its wettability thus enhancing the adhesion capacity of the films and the optimum CA value was determined as 42.75 ± 0.80°. Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS) analyses were realized to observe the morphological changes and chemical properties of the samples, respectively. Contact angle measurements, tensile testing, oxygen and water vapor transmission rate analyses were performed to obtain wettability values, mechanical properties and WVTRs, respectively. The WVTR was increased by plasma treatment and addition of KS (from 14.264 ± 0.214% to 21.020 ± 0.659%). The desired antibacterial performance of the samples was assessed with Staphylococcus aureus and Escherichia coli by inhibition ratio calculation and disc diffusion assay. The highest inhibition ratios were found as 64% for S. aureus and 92% for E. coli for plasma-treated CS-KS-PP films.

Collaboration


Dive into the Hilal Turkoglu Sasmazel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sorin Manolache

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdullah Ozturk

Middle East Technical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge