Hilário Alencar
Federal University of Alagoas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hilário Alencar.
Proceedings of the American Mathematical Society | 1994
Hilário Alencar; Manfredo do Carmo
Let \(M^n\)be a compact hypersurface of a sphere with constant mean curvature H. We introduce a tensor \(\phi\) related to H and to the second fundamental form, and show that if \(|\phi|^2\leq B_{H}\), where \(B_{H}\neq 0\)is a number depending only on H and n, then either \(|\phi|^2\equiv 0\) or \(|\phi|^2\equiv{B}_{H}.\) We also characterize all \(M^n\)with \(|\phi|^2\equiv{B}_{H}.\)
Annals of Global Analysis and Geometry | 1993
Hilário Alencar; Manfredo do Carmo; Harold Rosenberg
We generalize Reillys inequality for the first eigenvalue of immersed submanifolds ofIRm+1 and the total (squared) mean curvature, to hypersurfaces ofIRm+1 and the first eigenvalue of the higher order curvatures. We apply this to stability problems. We also consider hypersurfaces in hyperbolic space.
Proceedings of the American Mathematical Society | 2010
Hilário Alencar; Walcy Santos; Detang Zhou
It is well known that hypersurfaces \(M^n\)with constant mean curvature in a Riemannian manifold \(\overline{M}{n+1}(c)\)of constant sectional curvature c are solutions to the variational problem of extremizing the area function for volumepreserving variations.
Annals of Global Analysis and Geometry | 1998
Hilário Alencar; A. Gervasio Colares
AbstractFor a normal variation of a hypersurface Mn in a space form Qcn+1 by a normal vector field fN, R. Reilly proved:
Proceedings of the American Mathematical Society | 2004
Hilário Alencar; Harold Rosenberg; Walcy Santos
arXiv: Differential Geometry | 2015
Hilário Alencar; Gregório Silva Neto; Detang Zhou
\frac{d}{{dt}}S_{r + 1} (t)|_{t = 0} = L_r f + (S_1 S_{r + 1} - (r + 2)S_{r + 2} )f + c(n - r)S_r f,
Arkiv för Matematik | 2016
Hilário Alencar; Gregório Silva Neto
Arkiv för Matematik | 2016
Hilário Alencar; Manfredo do Carmo; Gregório Silva Neto
where Lr (0 < r < n − 1) is the linearized operator of the (r + 1)-mean curvature Sr+1 of Mn given by Lr = div(Pr∇); that is, Lr = the divergence of the rth Newton transformation Pr of the second fundamental form applied to the gradient ∇, and L0 = Δ the Laplacian of Mn.From the Dirichlet integral formula for Lr
Commentarii Mathematici Helvetici | 2006
Hilário Alencar; Manfredo do Carmo; W. Santos
Mathematische Zeitschrift | 1993
Hilário Alencar; M. do Carmo; A. G. Colares
\int {_{M^n } } (fL_r g + \left\langle {P_r \nabla f,\nabla g} \right\rangle ) = 0