Hilary A. Godwin
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hilary A. Godwin.
Nature | 2014
Randall M. Chin; Xudong Fu; Melody Y. Pai; Laurent Vergnes; Heejun Hwang; Gang Deng; Simon Diep; Brett Lomenick; Vijaykumar S. Meli; Gabriela C. Monsalve; Eileen Hu; Stephen A. Whelan; Jennifer X. Wang; Gwanghyun Jung; Gregory M. Solis; Farbod Fazlollahi; Chitrada Kaweeteerawat; Austin Quach; Mahta Nili; Abby S. Krall; Hilary A. Godwin; Helena R. Chang; Kym F. Faull; Feng Guo; Meisheng Jiang; Sunia A. Trauger; Alan Saghatelian; Daniel Braas; Heather R. Christofk; Catherine F. Clarke
Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit β is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit β and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases.
ACS Nano | 2014
Angela Ivask; Amro ElBadawy; Chitrada Kaweeteerawat; David Boren; Heidi Fischer; Zhaoxia Ji; Chong Hyun Chang; Rong Liu; Thabet Tolaymat; Donatello Telesca; Jeffrey I. Zink; Yoram Cohen; Patricia A. Holden; Hilary A. Godwin
Silver nanoparticles (Ag NPs) are commonly added to various consumer products and materials to impair bacterial growth. Recent studies suggested that the primary mechanism of antibacterial action of silver nanoparticles is release of silver ion (Ag(+)) and that particle-specific activity of silver nanoparticles is negligible. Here, we used a genome-wide library of Escherichia coli consisting of ∼4000 single gene deletion mutants to elucidate which physiological pathways are involved in how E. coli responds to different Ag NPs. The nanoparticles studied herein varied in both size and surface charge. AgNO3 was used as a control for soluble silver ions. Within a series of differently sized citrate-coated Ag NPs, smaller size resulted in higher Ag ion dissolution and toxicity. Nanoparticles functionalized with cationic, branched polyethylene imine (BPEI) exhibited equal toxicity with AgNO3. When we used a genome-wide approach to investigate the pathways involved in the response of E. coli to different toxicants, we found that only one of the particles (Ag-cit10) exhibited a pattern of response that was statistically similar to that of silver ion. By contrast, the pathways involved in E. coli response to Ag-BPEI particles were more similar to those observed for another cationic nanoparticle that did not contain Ag. Overall, we found that the pathways involved in bacterial responses to Ag nanoparticles are highly dependent on physicochemical properties of the nanoparticles, particularly the surface characteristics. These results have important implications for the regulation and testing of silver nanoparticles.
ACS Nano | 2015
Hilary A. Godwin; Catherine Nameth; David Avery; Lynn Bergeson; Daniel Bernard; Elizabeth Beryt; William K. Boyes; Scott C. Brown; Amy J. Clippinger; Yoram Cohen; Maria Doa; Christine Olgilvie Hendren; Patricia A. Holden; Keith A. Houck; Agnes B. Kane; Frederick Klaessig; Toivo T. Kodas; Robert Landsiedel; Iseult Lynch; Timothy F. Malloy; Mary Beth Miller; Julie Muller; Günter Oberdörster; Elijah J. Petersen; Richard C. Pleus; Philip Sayre; Vicki Stone; Kristie M. Sullivan; Jutta Tentschert; Philip Wallis
For nanotechnology to meet its potential as a game-changing and sustainable technology, it is important to ensure that the engineered nanomaterials and nanoenabled products that gain entry to the marketplace are safe and effective. Tools and methods are needed for regulatory purposes to allow rapid material categorization according to human health and environmental risk potential, so that materials of high concern can be targeted for additional scrutiny, while material categories that pose the least risk can receive expedited review. Using carbon nanotubes as an example, we discuss how data from alternative testing strategies can be used to facilitate engineered nanomaterial categorization according to risk potential and how such an approach could facilitate regulatory decision-making in the future.
ACS Nano | 2013
Andre E. Nel; Elina Nasser; Hilary A. Godwin; David Avery; Tina Bahadori; Lynn Bergeson; Elizabeth Beryt; James C. Bonner; Darrell R. Boverhof; Janet Carter; Vince Castranova; J. R. DeShazo; Saber M. Hussain; Agnes B. Kane; Frederick Klaessig; Eileen D. Kuempel; Mark Lafranconi; Robert Landsiedel; Timothy F. Malloy; Mary Beth Miller; Jeffery Morris; Kenneth Moss; Günter Oberdörster; Kent E. Pinkerton; Richard C. Pleus; Jo Anne Shatkin; Russell S. Thomas; Thabet Tolaymat; Amy Wang; Jeffrey Wong
There has been a conceptual shift in toxicological studies from describing what happens to explaining how the adverse outcome occurs, thereby enabling a deeper and improved understanding of how biomolecular and mechanistic profiling can inform hazard identification and improve risk assessment. Compared to traditional toxicology methods, which have a heavy reliance on animals, new approaches to generate toxicological data are becoming available for the safety assessment of chemicals, including high-throughput and high-content screening (HTS, HCS). With the emergence of nanotechnology, the exponential increase in the total number of engineered nanomaterials (ENMs) in research, development, and commercialization requires a robust scientific approach to screen ENM safety in humans and the environment rapidly and efficiently. Spurred by the developments in chemical testing, a promising new toxicological paradigm for ENMs is to use alternative test strategies (ATS), which reduce reliance on animal testing through the use of in vitro and in silico methods such as HTS, HCS, and computational modeling. Furthermore, this allows for the comparative analysis of large numbers of ENMs simultaneously and for hazard assessment at various stages of the product development process and overall life cycle. Using carbon nanotubes as a case study, a workshop bringing together national and international leaders from government, industry, and academia was convened at the University of California, Los Angeles, to discuss the utility of ATS for decision-making analyses of ENMs. After lively discussions, a short list of generally shared viewpoints on this topic was generated, including a general view that ATS approaches for ENMs can significantly benefit chemical safety analysis.
Environmental Science & Technology | 2016
Patricia A. Holden; Jorge L. Gardea-Torresdey; Fred Klaessig; Ronald F. Turco; Monika Mortimer; Kerstin Hund-Rinke; Elaine A. Cohen Hubal; David Avery; D. Barceló; Renata Behra; Yoram Cohen; Laurence Deydier-Stephan; P. Lee Ferguson; Teresa F. Fernandes; Barbara Herr Harthorn; W. Matthew Henderson; Robert A. Hoke; Danail Hristozov; John M. Johnston; Agnes B. Kane; Larry Kapustka; Arturo A. Keller; Hunter S. Lenihan; Wess Lovell; Catherine J. Murphy; Roger M. Nisbet; Elijah J. Petersen; Edward Salinas; Martin Scheringer; Monita Sharma
Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant concentrations-where observing outcomes is difficult-versus higher ENM doses, where responses are observable. What exposure conditions are typically used in assessing ENM hazards to populations? What conditions are used to test ecosystem-scale hazards? What is known regarding actual ENMs in the environment, via measurements or modeling simulations? How should exposure conditions, ENM transformation, dose, and body burden be used in interpreting biological and computational findings for assessing risks? These questions were addressed in the context of this critical review. As a result, three main recommendations emerged. First, researchers should improve ecotoxicology of ENMs by choosing test end points, duration, and study conditions-including ENM test concentrations-that align with realistic exposure scenarios. Second, testing should proceed via tiers with iterative feedback that informs experiments at other levels of biological organization. Finally, environmental realism in ENM hazard assessments should involve greater coordination among ENM quantitative analysts, exposure modelers, and ecotoxicologists, across government, industry, and academia.
Small | 2013
Sijie Lin; Yan Zhao; Zhaoxia Ji; Jason Ear; Chong Hyun Chang; Haiyuan Zhang; Cecile Low-Kam; Kristin Yamada; Huan Meng; Xiang Wang; Rong Liu; Suman Pokhrel; Lutz Mädler; Robert Damoiseaux; Tian Xia; Hilary A. Godwin; Shuo Lin; Andre E. Nel
The zebrafish is emerging as a model organism for the safety assessment and hazard ranking of engineered nanomaterials. In this Communication, the implementation of a roboticized high-throughput screening (HTS) platform with automated image analysis is demonstrated to assess the impact of dissolvable oxide nanoparticles on embryo hatching. It is further demonstrated that this hatching interference is mechanistically linked to an effect on the metalloprotease, ZHE 1, which is responsible for degradation of the chorionic membrane. The data indicate that 4 of 24 metal oxide nanoparticles (CuO, ZnO, Cr2 O3 , and NiO) could interfere with embryo hatching by a chelator-sensitive mechanism that involves ligation of critical histidines in the ZHE1 center by the shed metal ions. A recombinant ZHE1 enzymatic assay is established to demonstrate that the dialysates from the same materials responsible for hatching interference also inhibit ZHE1 activity in a dose-dependent fashion. A peptide-based BLAST search identifies several additional aquatic species that express enzymes with homologous histidine-based catalytic centers, suggesting that the ZHE1 mechanistic paradigm could be used to predict the toxicity of a large number of oxide nanoparticles that pose a hazard to aquatic species.
Current Opinion in Biotechnology | 2014
Patricia A. Holden; Joshua P. Schimel; Hilary A. Godwin
Manufactured nanomaterials (MNMs) are increasingly incorporated into everyday products and thus are entering the environment via manufacturing, product use, and waste disposal. Still, understanding MNM environmental hazards and fates lags MNM industry growth. To catch up, keep pace, and influence future MNM safe design strategies, rapid safety assessments are needed. Bacteria are important ecological nanotoxicology targets to consider when assessing MNM safety: bacteria are exposed to MNMs in water, sewage, soils, and sediments, wherein they influence MNM fates; bacteria can also be impacted-with potential health and ecosystem consequences. Routinely using bacteria for assessing MNMs would promote effective management of the environmental risks of this rapidly growing industry, but appropriate protocols and policies for this assessment need to be instituted.
ACS Nano | 2015
Chitrada Kaweeteerawat; Chong Hyun Chang; Kevin Roy; Rong Liu; Ruibin Li; Daniel B. Toso; Heidi Fischer; Angela Ivask; Zhaoxia Ji; Jeffrey I. Zink; Z. Hong Zhou; Guillaume Chanfreau; Donatello Telesca; Yoram Cohen; Patricia A. Holden; Andre E. Nel; Hilary A. Godwin
Copper formulations have been used for decades for antimicrobial and antifouling applications. With the development of nanoformulations of copper that are more effective than their ionic and microsized analogues, a key regulatory question is whether these materials should be treated as new or existing materials. To address this issue, here we compare the magnitude and mechanisms of toxicity of a series of Cu species (at concentration ranging from 2 to 250 μg/mL), including nano Cu, nano CuO, nano Cu(OH)2 (CuPro and Kocide), micro Cu, micro CuO, ionic Cu(2+) (CuCl2 and CuSO4) in two species of bacteria (Escherichia coli and Lactobacillus brevis). The primary size of the particles studied ranged from 10 nm to 10 μm. Our results reveal that Cu and CuO nanoparticles (NPs) are more toxic than their microsized counterparts at the same Cu concentration, with toxicities approaching those of the ionic Cu species. Strikingly, these NPs showed distinct differences in their mode of toxicity when compared to the ionic and microsized Cu, highlighting the unique toxicity properties of materials at the nanoscale. In vitro DNA damage assays reveal that both nano Cu and microsized Cu are capable of causing complete degradation of plasmid DNA, but electron tomography results show that only nanoformulations of Cu are internalized as intact intracellular particles. These studies suggest that nano Cu at the concentration of 50 μg/mL may have unique genotoxicity in bacteria compared to ionic and microsized Cu.
Chemical Senses | 2008
Lynne D. Houck; Richard A. Watts; Stevan J. Arnold; Kathleen E. Bowen; Karen M. Kiemnec; Hilary A. Godwin; Pamela W. Feldhoff; Richard C. Feldhoff
Pheromones are important chemical signals for many vertebrates, particularly during reproductive interactions. In the terrestrial salamander Plethodon shermani, a male delivers proteinaceous pheromones to the female as part of their ritualistic courtship behavior. These pheromones increase the females receptivity to mating, as shown by a reduction in courtship duration. One pheromone component in particular is plethodontid receptivity factor (PRF), a 22-kDa protein with multiple isoforms. This protein alone can act as a courtship pheromone that causes the female to be more receptive. We used a bacterial expression system to synthesize a single recombinant isoform of PRF. The recombinant protein was identical to the native PRF, based on mass spectrometry, circular dichroism spectra, and a behavioral bioassay that tested the effects of recombinant PRF (rPRF) on female receptivity (21% reduction in courtship duration). The rPRF appears to mimic the activity of a mixture of PRF isoforms, as well as a mixture of multiple different proteins that comprise the male courtship gland extract. Pheromones that are peptides have been characterized for some vertebrates; to date, however, rPRF is one of only 2 synthesized vertebrate proteins to retain full biological activity.
Environmental Science & Technology | 2012
Angela Ivask; Elizabeth Suarez; Trina Patel; David Boren; Zhaoxia Ji; Patricia A. Holden; Donatello Telesca; Robert Damoiseaux; Kenneth A. Bradley; Hilary A. Godwin
By exploiting a genome-wide collection of bacterial single-gene deletion mutants, we have studied the toxicological pathways of a 60-nm cationic (amino-functionalized) polystyrene nanomaterial (PS-NH(2)) in bacterial cells. The IC(50) of commercially available 60 nm PS-NH(2) was determined to be 158 μg/mL, the IC(5) is 108 μg/mL, and the IC(90) is 190 μg/mL for the parent E. coli strain of the gene deletion library. Over 4000 single nonessential gene deletion mutants of Escherichia coli were screened for the growth phenotype of each strain in the presence and absence of PS-NH(2). This revealed that genes clusters in the lipopolysaccharide biosynthetic pathway, outer membrane transport channels, ubiquinone biosynthetic pathways, flagellar movement, and DNA repair systems are all important to how this organism responds to cationic nanomaterials. These results, coupled with those from confirmatory assays described herein, suggest that the primary mechanisms of toxicity of the 60-nm PS-NH(2) nanomaterial in E. coli are destabilization of the outer membrane and production of reactive oxygen species. The methodology reported herein should prove generally useful for identifying pathways that are involved in how cells respond to a broad range of nanomaterials and for determining the mechanisms of cellular toxicity of different types of nanomaterials.
Collaboration
Dive into the Hilary A. Godwin's collaboration.
Thailand National Science and Technology Development Agency
View shared research outputs