Hilde Bakke
Norwegian Institute of Public Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hilde Bakke.
Vaccine | 2008
Didrik F. Vestrheim; Øistein Løvoll; Ingeborg S. Aaberge; Dominique A. Caugant; E. Arne Høiby; Hilde Bakke; Marianne A. Riise Bergsaker
The 7-valent pneumococcal conjugate vaccine (PCV-7) was licensed in Norway in 2001. In July 2006, PCV-7 was introduced in the Norwegian Childhood Vaccination Programme in a 2+1 dose schedule, with immunizations administered at 3, 5 and 12 months of age. PCV-7 was offered through the vaccination programme to all children born from January 2006, i.e. a catch-up for children aged 3-6 months. Prior to 2006 the use of PCV-7 was negligible. The effectiveness of the PCV-7 vaccination programme was assessed using data on invasive pneumococcal disease (IPD) incidence obtained from the Norwegian Surveillance System for Communicable Diseases, serotype distribution from the National Reference Laboratory for Pneumococci, and vaccine coverage and vaccination status from the Norwegian National Vaccination Register. Vaccine coverage quickly reached high levels; 95% of children >3 months born from January 2006 had received at least one immunization with PCV-7. The incidence rate of IPD among children <2 years rapidly declined; the rate of vaccine serotype IPD in this age group fell from an average of 47.1 cases/100,000 population in the 2 years prior to PCV-7 introduction to 13.7 cases/100,000 population in 2007. The incidence rate of nonvaccine serotype IPD remained stable. The vaccine programme effectiveness was estimated to be 74% (95% CI 57-85%). No vaccine failure was seen after complete primary immunization with two vaccine doses. Our findings indicate that PCV-7 provides highly effective protection against vaccine serotype IPD when administered in a 2+1 dose schedule.
Clinical and Vaccine Immunology | 2007
Synne Sandbu; Berit Feiring; Philipp Oster; Oddveig S. Helland; Hilde Bakke; Lisbeth M. Næss; Audun Aase; Ingeborg S. Aaberge; Anne-Cathrine Kristoffersen; Kjersti M. Rydland; Sandrine Tilman; Hanne Nøkleby; Einar Rosenqvist
ABSTRACT MenBvac and MeNZB are safe and efficacious vaccines against serogroup B meningococcal disease. MenBvac is prepared from a B:15:P1.7,16 meningococcal strain (strain 44/76), and MeNZB is prepared from a B:4:P1.7-2,4 strain (strain NZ98/254). At 6-week intervals, healthy adults received three doses of MenBvac (25 μg), MeNZB (25 μg), or the MenBvac and MeNZB (doses of 12.5 μg of each vaccine) vaccines combined, followed by a booster 1 year later. Two-thirds of the subjects who received a monovalent vaccine in the primary schedule received the other monovalent vaccine as a booster dose. The immune responses to the combined vaccine were of the same magnitude as the homologous responses to each individual vaccine observed. At 6 weeks after the third dose, 77% and 87% of the subjects in the combined vaccine group achieved serum bactericidal titers of ≥4 against strains 44/76 and NZ98/254, respectively, and 97% and 93% of the subjects achieved a fourfold or greater increase in opsonophagocytic activity against strains 44/76 and NZ98/254, respectively. For both strains, a trend of higher responses after the booster dose was observed in all groups receiving at least one dose of the respective strain-specific vaccine. Local and systemic reactions were common in all vaccine groups. Most reactions were mild or moderate in intensity, and there were no vaccine-related serious adverse events. The safety profile of the combined vaccine was not different from those of the separate monovalent vaccines. In conclusion, use of either of the single vaccines or the combination of MenBvac and MeNZB may have a considerable impact on the serogroup B meningococcal disease situation in many countries.
Scandinavian Journal of Immunology | 2006
Hilde Bakke; H. H. Samdal; Johan Holst; F. Oftung; Inger Lise Haugen; Anne-Cathrine Kristoffersen; Anita Haugan; Libuse Janakova; Gro Ellen Korsvold; G. Krogh; E. A. S. Andersen; P. Djupesland; T. Holand; R. Rappuoli; Bjørn Haneberg
Sixty‐five healthy adult volunteers were immunized four times at 1‐week intervals with an inactivated whole‐virus influenza vaccine based on the strain A/New Caledonia/20/99 (H1N1) without adjuvant. The vaccine was administered as nasal spray with a newly developed device to secure intranasal delivery (OptiMist™, OptiNose AS, Oslo, Norway), as regular nasal spray, nasal drops or as an oral spray. Significant IgA‐antibody responses in nasal secretions were induced in volunteers immunized intranasally but not after oral spray immunization. In saliva, IgA antibodies were only marginally amplified even after oral spray immunizations. At least 73% of the volunteers belonging to any group of vaccine delivery reached serum haemagglutination inhibition titres of 40 or higher, considered protective against influenza, after only two vaccine doses. Those who had the vaccine delivered intranasally also showed evidence from in vitro secretion of granzyme B that cytotoxic T cells had been stimulated. Although immunization with the breath‐actuated OptiMist™ device and nasal drops were superior with respect to both mucosal and systemic immune responses, oral spray immunization might still be considered for studies of mucosal adjuvants that are not yet acceptable for intranasal use.
Infection and Immunity | 2001
Hilde Bakke; Kristian Lie; Inger Lise Haugen; Gro Ellen Korsvold; E. Arne Høiby; Lisbeth M. Næss; Johan Holst; Ingeborg S. Aaberge; Fredrik Oftung; Bjørn Haneberg
ABSTRACT We have studied the ability of outer membrane vesicle (OMV) vaccines from Neisseria meningitidis serogroup B to induce vaccine-specific antibody and spleen cell proliferative responses in mice after being administered intranasally (i.n.) and/or subcutaneously (s.c.). A series of four weekly i.n. doses (25 μg) without adjuvant or a single s.c. dose (2.5 μg) with aluminum hydroxide was followed 2 months later by secondary i.n. or s.c. immunizations. After i.n. priming, both immunoglobulin G (IgG) antibody responses in serum, measured by enzyme-linked immunosorbent assay, and IgA antibodies in saliva and extracts of feces were significantly boosted by later i.n. immunizations. The IgG antibody responses in serum were also significantly augmented by secondary s.c. immunization after i.n. as well as s.c. priming. Sera from mice immunized i.n. reached the same level of bactericidal activity as after s.c. immunizations. The s.c. immunizations alone, however, had no effect on mucosal IgA antibody responses, but could prime for booster antibody responses in secretions to later i.n. immunizations. The i.n. immunizations also led to marked OMV-specific spleen cell proliferation in vitro. Both serum antibody responses and spleen cell proliferation were higher after i.n. priming and later s.c. immunizations than after s.c. immunizations alone. There was thus no evidence that i.n. priming had induced immunological tolerance within the B- or T-cell system. Our results indicate that a nonproliferating meningococcal OMV vaccine given i.n. can induce immunological memory and that it may be favorably combined with similar vaccines for injections.
Human Vaccines | 2005
Helvi Holm Samdal; Hilde Bakke; Fredrik Oftung; Johan Holst; Inger Lise Haugenb; Gro Ellen Korsvold; Anne-Cathrine Kristoffersen; Grethe Krogh; Karin Nord; Rino Rappuoli; Aud Katrine Herland Berstad; Bjørn Haneberg
Twenty-eight healthy adult volunteers were immunized intranasally with an inactivated whole-virus influenza vaccine based on the strain A/New Caledonia/20/99 (H1N1), either in saline or mixed with formaldehyde-inactivated Bordetella pertussis as a mucosal adjuvant, or in a thixotropic vehicle with mucoadhesive properties. After four doses, all groups of vaccinees developed significant IgG- and IgA-antibody responses, measured by ELISA, in respectively serum and nasal secretions. None of the volunteers had demonstrable hemagglutination inhibition (HAI) antibodies in serum before being immunized, whereas more than 80% of them reached HAI titers ? 40, considered protective, after immunizations. In addition, cellular immune responses, measured as significant increases in CD4+ T-cell proliferation and granzyme B-producing cytotoxic T-cells, were detected against the vaccine strain as well as against heterologous virus strains (H3N2). However, no additive effect on these responses could be demonstrated with use of B. pertussis or the thixotropic substance in the present vaccines. It appeared, actually, that the mucoadhesive vehicle containing the thixotropic substance was less efficient than were the two other formulations. An influenza vaccine made as a simple particulate formulation of inactivated virus, and given repeatedly onto the nasal mucosa, may thus be an attractive alternative to currently available vaccines.
Infection and Immunity | 2002
Libuse Janakova; Hilde Bakke; Inger Lise Haugen; Aud Katrine Herland Berstad; E. Arne Høiby; Ingeborg S. Aaberge; Bjørn Haneberg
ABSTRACT Inhalation of antigens may stimulate the immune system by way of the upper as well as the lower airways. We have shown that at least 1,000 times more live pneumococci were recovered from pulmonary tissue after being presented as drops of a liquid suspension onto the nares of anesthetized mice compared to the number of bacteria recovered from animals that were not anesthetized in the course of the challenge. Mice that were similarly immunized intranasally by inhalation of three different nonreplicating particulate vaccine formulations, i.e., a meningococcal outer membrane vesicle (OMV) vaccine, a formalin-inactivated whole-virus influenza (INV) vaccine, and the INV vaccine with OMVs as a mucosal adjuvant, during general intravenous anesthesia developed concentrations of vaccine-specific serum immunoglobulin G (IgG) antibodies that were four to nine times higher than in mice that were fully awake during immunizations. The concentrations of IgA antibodies in serum were also higher in anesthetized than in nonanesthetized mice and correlated positively with the corresponding levels of serum IgG antibodies in the anesthetized but not in the nonanesthetized mice. In saliva and feces, however, the concentrations of IgA antibodies were equally high whether or not the animals were dormant during immunizations. The results indicate that intrapulmonary antigen presentation, as a part of an intranasal immunization strategy, is of importance for systemic but not for mucosal antibody responses. A major portion of IgA antibodies in serum may thus be derived from nonmucosal sites.
Scandinavian Journal of Immunology | 2005
Bizanov G; Libuse Janakova; Knapstad Se; Karlstad T; Hilde Bakke; Inger Lise Haugen; Anita Haugan; Samdal Hh; Bjørn Haneberg
Mice immunized intranasally with a formalin‐inactivated A/PR/8/34 (H1N1) influenza whole virus vaccine adjuvanted with cholera toxin, outer membrane vesicles from group B meningococci or formalin‐inactivated whole cell Bordetella pertussis were protected against replication of the homologous virus in the nasal cavity. Only some mice were protected against clinical illness measured as weight loss and lowered body temperature. All mice immunized subcutaneously with one‐tenth the intranasal vaccine dose without adjuvant were protected against clinical illness but not against local mucosal viral replication. Replicating virus was primarily found in animals with low concentrations of immunoglobulin (Ig)‐A antibodies in saliva regardless of concentrations of IgG antibodies in serum. Clinical illness was seen only in those with low serum antibodies regardless of antibody levels in saliva. Nonreplicating nasal vaccines may not be sufficiently protective unless they also have a substantial influence on systemic immunity.
Clinical and Vaccine Immunology | 2011
Audun Aase; Tove Karin Herstad; Samuel Merino; Merete Bolstad; Synne Sandbu; Hilde Bakke; Ingeborg S. Aaberge
ABSTRACT Waning vaccine-induced immunity against Bordetella pertussis is observed among adolescents and adults. A high incidence of pertussis has been reported in this population, which serves as a reservoir for B. pertussis. A fifth dose of reduced antigen of diphtheria-tetanus-acellular-pertussis and inactivated polio vaccine was given as a booster dose to healthy teenagers. The antibody activity against B. pertussis antigens was measured prior to and 4 to 8 weeks after the booster by different assays: enzyme-linked immunosorbent assays (ELISAs) of IgG and IgA against pertussis toxin (PT) and filamentous hemagglutinin (FHA), IgG against pertactin (PRN), opsonophagocytic activity (OPA), and IgG binding to live B. pertussis. There was a significant increase in the IgG activity against PT, FHA, and PRN following the booster immunization (P < 0.001). The prebooster sera showed a geometric mean OPA titer of 65.1 and IgG binding to live bacteria at a geometric mean concentration of 164.9 arbitrary units (AU)/ml. Following the fifth dose, the OPA increased to a titer of 360.4, and the IgG concentration against live bacteria increased to 833.4 AU/ml (P < 0.001 for both). The correlation analyses between the different assays suggest that antibodies against FHA and PRN contribute the most to the OPA and IgG binding.
Vaccine | 2003
Anita Haugan; Phuong Xuan Thi Dao; Nina Glende; Hilde Bakke; Inger Lise Haugen; Libuse Janakova; Aud Katrine Herland Berstad; Johan Holst; Bjørn Haneberg
In mice immunised intranasally with an inactivated whole-virus influenza (INV) vaccine, or ovalbumin (OVA), formalin-inactivated Bordetella pertussis (Bp) augmented antibody responses to the same degree as did cholera toxin (CT) when simply being mixed with INV or OVA. In order to study possible non-carrier effects of mucosal adjuvants, mice were given Bp or CT intranasally 1 day before or 1 day after the INV vaccines. At high antigen doses, both Bp and CT had an adjuvant effect on antibodies in serum also when given 1 day after the vaccine. However, Bp and CT inhibited such antibody responses in serum and saliva when given 1 day ahead of the vaccine. This inhibitory effect was most marked at low antigen doses, i.e. when the adjuvant effect was less obvious. In that event, Bp also inhibited responses in serum and saliva when given 1 day after the INV vaccine. The inhibition of these responses may thus depend on Bp and CT themselves being strongly immunogenic, and competing with INV for the functional capacity of the mucosal immune system.
Vaccine | 2004
Hilde Bakke; Torhild N. Setek; Phuong N. Huynh; Inger Lise Haugen; E. Arne Høiby; Johan Holst; Ingeborg S. Aaberge; Bjørn Haneberg