Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hildegarde Vandenhove is active.

Publication


Featured researches published by Hildegarde Vandenhove.


Journal of Environmental Radioactivity | 2013

The IAEA handbook on radionuclide transfer to wildlife

B.J. Howard; N.A. Beresford; David Copplestone; D. Telleria; G. Proehl; Ross Jeffree; T. Yankovich; J.E. Brown; Kathryn A. Higley; Mathew P. Johansen; H. Mulye; Hildegarde Vandenhove; S. Gashchak; Michael D. Wood; Hyoe Takata; P. Andersson; Paul Dale; J. Ryan; A. Bollhöfer; C. Doering; C.L. Barnett; C. Wells

An IAEA handbook presenting transfer parameter values for wildlife has recently been produced. Concentration ratios (CRwo-media) between the whole organism (fresh weight) and either soil (dry weight) or water were collated for a range of wildlife groups (classified taxonomically and by feeding strategy) in terrestrial, freshwater, marine and brackish generic ecosystems. The data have been compiled in an on line database, which will continue to be updated in the future providing the basis for subsequent revision of the Wildlife TRS values. An overview of the compilation and analysis, and discussion of the extent and limitations of the data is presented. Example comparisons of the CRwo-media values are given for polonium across all wildlife groups and ecosystems and for molluscs for all radionuclides. The CRwo-media values have also been compared with those currently used in the ERICA Tool which represented the most complete published database for wildlife transfer values prior to this work. The use of CRwo-media values is a pragmatic approach to predicting radionuclide activity concentrations in wildlife and is similar to that used for screening assessments for the human food chain. The CRwo-media values are most suitable for a screening application where there are several conservative assumptions built into the models which will, to varying extents, compensate for the variable data quality and quantity, and associated uncertainty.


Science of The Total Environment | 2009

Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments

Lise Duquène; Hildegarde Vandenhove; Filip Tack; Erik Meers; Jan Baeten

The applicability of biodegradable amendments in phytoremediation to increase the uptake of uranium (U), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb) and zinc (Zn) by Indian mustard (Brassica juncea) and ryegrass (Lolium perenne) was tested in a greenhouse experiment. Plants were cultivated during one month on two soils with naturally or industrially increased contaminant levels of U. Treatments with citric acid, NH4-citrate/citric acid, oxalic acid, S,S-ethylenediamine disuccinic acid (EDDS) or nitrilotriacetic acid (NTA) at a rate of 5 mmol kg(-1) dry soil caused increases in soil solution concentrations that were up to 18 times higher for U and up to 1570 times higher for other heavy metals, compared to the controls. Shoot concentrations increased to a much smaller extent. With EDDS, 19-, 34-, and 37-fold increases were achieved in shoots of Indian mustard for U, Pb and Cu, respectively. The increases in plant uptake of Cd, Cr and Zn were limited to a factor of four at most. Ryegrass generally extracted less U and metals than Indian mustard. Despite a marked increase of U and metal concentrations in shoots after addition of amendments, the estimated time required to obtain an acceptable reduction in soil contaminant concentrations was impractically long. Only for Cu and Zn in one of the studied soils, could the Flemish standards for clean soil theoretically be attained in less than 100 years.


Plant Physiology and Biochemistry | 2008

Effects of uranium and phosphate concentrations on oxidative stress related responses induced in Arabidopsis thaliana

Nathalie Vanhoudt; Hildegarde Vandenhove; Karen Smeets; Tony Remans; May Van Hees; Jaco Vangronsveld; Ann Cuypers

The production of reactive oxygen species (ROS) and the induction of the antioxidative defense mechanism are very important in heavy metal toxicity. In this study, biological effects induced after uranium contamination were investigated for Arabidopsis thaliana. Three-week-old seedlings were exposed for 4days to 100microM U in an adjusted Hoagland solution. Uranium exposure caused a decreased growth of leaves (38%) and roots (70%) and a modified nutrient profile was observed. Investigation of lipid peroxidation products indicated a significant increase of membrane damage. Important ROS-producing and -scavenging enzymes were studied at transcriptional and protein level to investigate the importance of the ROS-signature in uranium toxicity. Elevated gene expression was observed for NADPH-oxidase, a ROS-producing enzyme. Changes in gene expression for different ROS-scavenging enzymes as Cu/ZnSOD, FeSOD and APX were also observed. Analysis of enzyme capacities showed little effects after uranium contamination. Higher ascorbate levels in uranium exposed leaves suggested an increase of antioxidative defense via the ascorbate-glutathione pathway after uranium exposure. Theoretical calculations indicated rapid formation of uranium-phosphate precipitates if normal phosphate concentrations are used. Precipitation tests recommend the use of 25microM P in combination with 100microM U to inhibit uranium precipitation. Because this combination was used for uranium toxicity investigation, the influence of this low phosphate concentration on plant growth and oxidative stress had to be evaluated. Minor differences between low phosphate (25microM P) and high phosphate (100microM P) treatments were observed justifying the use of the low phosphate concentration in combination with uranium.


International Journal of Phytoremediation | 2001

Feasibility of Phytoextraction to Clean Up Low-Level Uranium-Contaminated Soil

Hildegarde Vandenhove; May Van Hees; Stefaan Van Winckel

ABSTRACT The potential to phytoextract uranium (U) from a sandy soil contaminated at low levels was tested in the greenhouse. Two soils were tested: a control soil (317 Bq 238U kg-1) and the same soil washed with bicarbonate (69 Bq 238U kg-1). Ryegrass (Lolium perenne cv. Melvina), Indian mustard (Brassica juncea cv. Vitasso), and Redroot Pigweed (Amarathus retroflexus) were used as test plants. The annual removal of the soil activity with the biomass was less than 0.1%. The addition of citric acid (25 mmol kg-1) 1 week before the harvest increased U uptake up to 500-fold. With a ryegrass and mustard yield of 15000 kg ha-1 and 10000 kg ha-1, respectively, up to 3.5% and 4.6% of the soil activity could annually be removed with the biomass. With a desired activity reduction level of 1.5 and 5 for the bicarbonate washed and control soil, respectively, it would take 10 to 50 years to attain the release limit. A linear relationship between the plant 238U concentration and the 238U concentration in the soil solution of the control, bicarbonate-washed, or citric acid-treated soil points to the importance of the soil solution activity concentration in determining U uptake and hence to the importance of solubilising agents to increase plant uptake. However, citric acid addition resulted in a decreased dry weight production (all plants tested) and crop regrowth (in case of ryegrass).


Plant Physiology and Biochemistry | 2010

Life-cycle chronic gamma exposure of Arabidopsis thaliana induces growth effects but no discernable effects on oxidative stress pathways.

Hildegarde Vandenhove; Nathalie Vanhoudt; Ann Cuypers; May Van Hees; Nele Horemans

Arabidopsis thaliana was exposed to low-dose chronic gamma irradiation during a full life cycle (seed to seed) and several biological responses were investigated. Applied dose rates were 2336, 367 and 81 microGy h(-1). Following 24 days (inflorescence emergence), 34 days (approximately 50% of flowers open) and 54 days (silice ripening) exposure, plants were harvested and monitored for biometric parameters, capacities of enzymes involved in the antioxidative defence mechanisms (SOD, APOD, GLUR, GPOD, SPOD, CAT, ME), glutathione and ascorbate pool, lipid peroxidation products, altered gene expression of selected genes encoding for antioxidative enzymes or reactive oxygen species production, and DNA integrity. Root fresh weight was significantly reduced after gamma exposure compared to the control at all stages monitored but no significant differences in root weight for the different dose rates applied was observed. Leaf and stem fresh weight were significantly reduced at the highest irradiation level after 54 days exposure only. Also total plant fresh was significantly lower at silice riping and this for the highest and medium dose rate applied. The dose rate estimated to result in a 10% reduction in growth (EDR-10) ranged between 60 and 80 microGy h(-1). Germination of seeds from the gamma irradiated plants was not hampered. For several of the antioxidative defence enzymes studied, the enzyme capacity was generally stimulated towards flowering but generally no significant effect of dose rate on enzyme capacity was observed. Gene analysis revealed a significant transient and dose dependent change in expression of RBOHC indicating active reactive oxygen production induced by gamma irradiation. No effect of irradiation was observed on concentration or reduction state of the non-enzymatic antioxidants, ascorbate and glutathione. The level of lipid peroxidation products remained constant throughout the observation period and was not affected by dose rate. The comet assay did not reveal any effect of gamma dose rate on DNA integrity.


Science of The Total Environment | 2012

Assessing doses to terrestrial wildlife at a radioactive waste disposal site: Inter-comparison of modelling approaches

Mathew P. Johansen; C.L. Barnett; N.A. Beresford; J.E. Brown; M. Černe; B.J. Howard; S. Kamboj; Dong-Kwon Keum; Borut Smodis; John R. Twining; Hildegarde Vandenhove; J. Vives i Batlle; Michael D. Wood; C. Yu

Radiological doses to terrestrial wildlife were examined in this model inter-comparison study that emphasised factors causing variability in dose estimation. The study participants used varying modelling approaches and information sources to estimate dose rates and tissue concentrations for a range of biota types exposed to soil contamination at a shallow radionuclide waste burial site in Australia. Results indicated that the dominant factor causing variation in dose rate estimates (up to three orders of magnitude on mean total dose rates) was the soil-to-organism transfer of radionuclides that included variation in transfer parameter values as well as transfer calculation methods. Additional variation was associated with other modelling factors including: how participants conceptualised and modelled the exposure configurations (two orders of magnitude); which progeny to include with the parent radionuclide (typically less than one order of magnitude); and dose calculation parameters, including radiation weighting factors and dose conversion coefficients (typically less than one order of magnitude). Probabilistic approaches to model parameterisation were used to encompass and describe variable model parameters and outcomes. The study confirms the need for continued evaluation of the underlying mechanisms governing soil-to-organism transfer of radionuclides to improve estimation of dose rates to terrestrial wildlife. The exposure pathways and configurations available in most current codes are limited when considering instances where organisms access subsurface contamination through rooting, burrowing, or using different localised waste areas as part of their habitual routines.


Environmental Pollution | 2012

A review of multiple stressor studies that include ionising radiation

Nathalie Vanhoudt; Hildegarde Vandenhove; A. Real; Clare Bradshaw; Karolina Stark

Studies were reviewed that investigated the combined effects of ionising radiation and other stressors on non-human biota. The aim was to determine the state of research in this area of science, and determine if a review of the literature might permit a gross generalization as to whether the combined effects of multi-stressors and radiation are fundamentally additive, synergistic or antagonistic. A multiple stressor database was established for different organism groups. Information was collected on species, stressors applied and effects evaluated. Studies were mostly laboratory based and investigated two-component mixtures. Interactions declared positive occurred in 58% of the studies, while 26% found negative interactions. Interactions were dependent on dose/concentration, on organisms life stage and exposure time and differed among endpoints. Except for one study, none of the studies predicted combined effects following Concentration Addition or Independent Action, and hence, no justified conclusions can be made about synergism or antagonism.


Journal of Environmental Radioactivity | 2004

Phytoextraction for clean-up of low-level uranium contaminated soil evaluated

Hildegarde Vandenhove; M. Van Hees

Spills in the nuclear fuel cycle have led to soil contamination with uranium. In case of small contamination just above release levels, low-cost yet sufficiently efficient remedial measures are recommended. This study was executed to test if low-level U contaminated sandy soil from a nuclear fuel processing site could be phytoextracted in order to attain the required release limits. Two soils were tested: a control soil (317 Bq 238U kg(-1)) and the same soil washed with bicarbonate (69 Bq 238U kg(-1)). Ryegrass (Lolium perenne cv. Melvina) and Indian mustard (Brassica juncea cv. Vitasso) were used as test plants. The annual removal of soil activity by the biomass was less than 0.1%. The addition of citric acid (25 mmol kg(-1)) 1 week before the harvest increased U uptake up to 500-fold. With a ryegrass and mustard yield of 15,000 and 10,000 kg ha(-1), respectively, up to 3.5% and 4.6% of the soil activity could be removed annually by the biomass. With a desired activity reduction level of 1.5 and 5 for the bicarbonate-washed and control soil, respectively, it would take 10-50 years to attain the release limit. However, citric acid addition resulted in a decreased dry weight production.


Journal of Environmental Radioactivity | 2010

The combined effect of uranium and gamma radiation on biological responses and oxidative stress induced in Arabidopsis thaliana.

Nathalie Vanhoudt; Hildegarde Vandenhove; Nele Horemans; May Van Hees; Jaco Vangronsveld; Ann Cuypers

Uranium never occurs as a single pollutant in the environment, but always in combination with other stressors such as ionizing radiation. As effects induced by multiple contaminants can differ markedly from the effects induced by the individual stressors, this multiple pollution context should not be neglected. In this study, effects on growth, nutrient uptake and oxidative stress induced by the single stressors uranium and gamma radiation are compared with the effects induced by the combination of both stressors. By doing this, we aim to better understand the effects induced by the combined stressors but also to get more insight in stressor-specific response mechanisms. Eighteen-day-old Arabidopsis thaliana seedlings were exposed for 3 days to 10 muM uranium and 3.5 Gy gamma radiation. Gamma radiation interfered with uranium uptake, resulting in decreased uranium concentrations in the roots, but with higher transport to the leaves. This resulted in a better root growth but increased leaf lipid peroxidation. For the other endpoints studied, effects under combined exposure were mostly determined by uranium presence and only limited influenced by gamma presence. Furthermore, an important role is suggested for CAT1/2/3 gene expression under uranium and mixed stressor conditions in the leaves.


Environmental Toxicology and Chemistry | 2013

Effects of pH on uranium uptake and oxidative stress responses induced in Arabidopsis thaliana.

Eline Saenen; Nele Horemans; Nathalie Vanhoudt; Hildegarde Vandenhove; Geert Biermans; May Van Hees; Jaco Vangronsveld; Ann Cuypers

Uranium (U) causes oxidative stress in Arabidopsis thaliana plants grown at pH 5.5. However, U speciation and its toxicity strongly depend on environmental parameters, for example pH. It is unknown how different U species determine U uptake and translocation within plants and how they might affect the oxidative defense mechanisms of these plants. The present study analyzed U uptake and oxidative stress-related responses in A. thaliana (Columbia ecotype) under contrasted U chemical speciation conditions. The 18-d-old seedlings were exposed for 3 d to 25 µM U in a nutrient solution of which the pH was adjusted to 4.5, 5.5, 6.5, or 7.5. Results indicate that there is a different rate of U uptake and translocation at the different pHs, with high uptake and low translocation at low pH and lower uptake but higher translocation at high pH. After U exposure, an increased glutathione reductase activity and total glutathione concentration were observed in U-exposed roots, pointing toward an important role for glutathione in the root defense system against U either by chelation or by antioxidative defense mechanisms. In leaves, antioxidative defense mechanisms were activated on U exposure, indicated by increased superoxide dismutase and catalase activity. As it seems that U toxicity is influenced by pH, it is important to consider site-specific characteristics when making U risk assessments.

Collaboration


Dive into the Hildegarde Vandenhove's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B.J. Howard

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar

A. Real

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.L. Barnett

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge