Hille W. van Dijk
Academic Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hille W. van Dijk.
Investigative Ophthalmology & Visual Science | 2009
Hille W. van Dijk; Pauline H. B. Kok; Mona K. Garvin; Milan Sonka; J. Hans DeVries; Robert P. Michels; Mirjam E. J. van Velthoven; Reinier O. Schlingemann; Frank D. Verbraak; Michael D. Abràmoff
PURPOSE To determine whether type 1 diabetes preferentially affects the inner retinal layers by comparing the thickness of six retinal layers in type 1 diabetic patients who have no or minimal diabetic retinopathy (DR) with those of age- and sex-matched healthy controls. METHODS Fifty-seven patients with type 1 diabetes with no (n = 32) or minimal (n = 25) DR underwent full ophthalmic examination, stereoscopic fundus photography, and optical coherence tomography (OCT). After automated segmentation of intraretinal layers of the OCT images, mean thickness was calculated for six layers of the retina in the fovea, the pericentral area, and the peripheral area of the central macula and were compared with those of an age- and sex-matched control group. RESULTS In patients with minimal DR, the mean ganglion cell/inner plexiform layer was 2.7 microm thinner (95% confidence interval [CI], 2.1-4.3 microm) and the mean inner nuclear layer was 1.1 microm thinner (95% CI, 0.1-2.1 microm) in the pericentral area of the central macula compared to those of age-matched controls. In the peripheral area, the mean ganglion cell/inner plexiform layer remained significantly thinner. No other layers showed a significant difference. CONCLUSIONS Thinning of the total retina in type 1 diabetic patients with minimal retinopathy compared with healthy controls is attributed to a selective thinning of inner retinal layers and supports the concept that early DR includes a neurodegenerative component.
Investigative Ophthalmology & Visual Science | 2010
Hille W. van Dijk; Frank D. Verbraak; Pauline H. B. Kok; Mona K. Garvin; Milan Sonka; Kyungmoo Lee; J. Hans DeVries; Robert P. Michels; Mirjam E. J. van Velthoven; Reinier O. Schlingemann; Michael D. Abràmoff
PURPOSE. To determine which retinal layers are most affected by diabetes and contribute to thinning of the inner retina and to investigate the relationship between retinal layer thickness (LT) and diabetes duration, diabetic retinopathy (DR) status, age, glycosylated hemoglobin (HbA1c), and the sex of the individual, in patients with type 1 diabetes who have no or minimal DR. METHODS. Mean LT was calculated for the individual retinal layers after automated segmentation of spectral domain-optical coherence tomography scans of patients with diabetes and compared with that in control subjects. Multiple linear regression analysis was used to determine the relationship between LT and HbA1c, age, sex, diabetes duration, and DR status. RESULTS. In patients with minimal DR, the mean ganglion cell layer (GCL) in the pericentral area was 5.1 mum thinner (95% confidence interval [CI], 1.1-9.1 mum), and in the peripheral macula, the mean retinal nerve fiber layer (RNFL) was 3.7 mum thinner (95% CI, 1.3-6.1 mum) than in the control subjects. There was a significant linear correlation (R = 0.53, P < 0.01) between GCL thickness and diabetes duration in the pooled group of patients. Multiple linear regression analysis (R = 0.62, P < 0.01) showed that DR status was the most important explanatory variable. CONCLUSIONS. This study demonstrates GCL thinning in the pericentral area and corresponding loss of RNFL thickness in the peripheral macula in patients with type 1 diabetes and no or minimal DR compared with control subjects. These results support the concept that diabetes has an early neurodegenerative effect on the retina, which occurs even though the vascular component of DR is minimal.
Investigative Ophthalmology & Visual Science | 2012
Hille W. van Dijk; Frank D. Verbraak; Pauline H. B. Kok; Marilette Stehouwer; Mona K. Garvin; Milan Sonka; J. Hans DeVries; Reinier O. Schlingemann; Michael D. Abràmoff
PURPOSE The purpose of this study was to determine whether diabetes type 2 causes thinning of retinal layers as a sign of neurodegeneration and to investigate the possible relationship between this thinning and duration of diabetes mellitus, diabetic retinopathy (DR) status, age, sex, and glycemic control (HbA1c). METHODS Mean layer thickness was calculated for retinal layers following automated segmentation of spectral domain optical coherence tomography images of diabetic patients with no or minimal DR and compared with controls. To determine the relationship between layer thickness and diabetes duration, DR status, age, sex, and HbA1c, a multiple linear regression analysis was used. RESULTS In the pericentral area of the macula, the retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) were thinner in patients with minimal DR compared to controls (respective difference 1.9 μm, 95% confidence interval [CI] 0.3-3.5 μm; 5.2 μm, 95% CI 1.0-9.3 μm; 4.5 μm, 95% CI 2.2-6.7 μm). In the peripheral area of the macula, the RNFL and IPL were thinner in patients with minimal DR compared to controls (respective difference 3.2 μm, 95% CI 0.1-6.4 μm; 3.3 μm, 95% CI 1.2-5.4 μm). Multiple linear regression analysis showed DR status to be the only significant explanatory variable (R = 0.31, P = 0.03) for this retinal thinning. CONCLUSIONS This study demonstrated thinner inner retinal layers in the macula of type 2 diabetic patients with minimal DR than in controls. These results support the concept that early DR includes a neurodegenerative component.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Elliott H. Sohn; Hille W. van Dijk; Chunhua Jiao; Pauline H. B. Kok; Woojin Jeong; Nazli Demirkaya; Allison Garmager; Ferdinand W. N. M. Wit; Murat Kucukevcilioglu; Mirjam E. J. van Velthoven; J. Hans DeVries; Robert F. Mullins; Markus H. Kuehn; Reinier O. Schlingemann; Milan Sonka; Frank D. Verbraak; Michael D. Abràmoff
Significance Diabetic retinopathy (DR), a primary cause of blindness, is characterized by microvascular abnormalities. Recent evidence suggests that retinal diabetic neuropathy (RDN) also occurs in people with diabetes, but little is known about the temporal relationship between DR and RDN. This longitudinal study in people with diabetes with no or minimal DR shows that RDN precedes signs of microvasculopathy and that RDN is progressive and independent of glycated hemoglobin, age, and sex. This finding was further confirmed in human donor eyes and in two experimental mouse models of diabetes. The results suggest that RDN is not ischemic in origin and represent a shift in our understanding of the pathophysiology of this complication of diabetes that potentially affects vision in all people with diabetes mellitus. Diabetic retinopathy (DR) has long been recognized as a microvasculopathy, but retinal diabetic neuropathy (RDN), characterized by inner retinal neurodegeneration, also occurs in people with diabetes mellitus (DM). We report that in 45 people with DM and no to minimal DR there was significant, progressive loss of the nerve fiber layer (NFL) (0.25 μm/y) and the ganglion cell (GC)/inner plexiform layer (0.29 μm/y) on optical coherence tomography analysis (OCT) over a 4-y period, independent of glycated hemoglobin, age, and sex. The NFL was significantly thinner (17.3 μm) in the eyes of six donors with DM than in the eyes of six similarly aged control donors (30.4 μm), although retinal capillary density did not differ in the two groups. We confirmed significant, progressive inner retinal thinning in streptozotocin-induced “type 1” and B6.BKS(D)-Leprdb/J “type 2” diabetic mouse models on OCT; immunohistochemistry in type 1 mice showed GC loss but no difference in pericyte density or acellular capillaries. The results suggest that RDN may precede the established clinical and morphometric vascular changes caused by DM and represent a paradigm shift in our understanding of ocular diabetic complications.
Investigative Ophthalmology & Visual Science | 2013
Nazli Demirkaya; Hille W. van Dijk; Sanne M. van Schuppen; Michael D. Abràmoff; Mona K. Garvin; Milan Sonka; Reinier O. Schlingemann; Frank D. Verbraak
PURPOSE To determine the effect of age on the thickness of individual retinal layers, measured with spectral-domain optical coherence tomography (SD-OCT), in a population of healthy Caucasians. METHODS One hundred and twenty subjects with an age ranging between 18 and 81 years were examined with SD-OCT. Mean layer thickness was calculated for seven retinal layers, in the fovea (region 1 of the 9 Early Treatment Diabetic Retinopathy Study [ETDRS] regions); in the pericentral ring (ETDRS regions 2 to 5); and the peripheral ring (ETDRS regions 6 to 9) following automated segmentation using the Iowa Reference Algorithm. In addition, mean peripapillary retinal nerve fiber layer (RNFL) thickness was measured. The partial correlation test was performed on each layer to determine the effect of age on layer thickness, while correcting for spherical equivalent, sex, and Topcon image quality factor as confounders, followed by Bonferroni corrections to adjust for multiple testing. RESULTS The thickness of the peripapillary RNFL (R = -0.332; P < 0.001); pericentral ganglion cell layer (R = -0.354, P < 0.001); peripheral inner plexiform layer (R = -0.328, P < 0.001); and foveal outer segment layer (R = -0.381, P < 0.001) decreased significantly with increasing age. Foveal RPE thickness (R = 0.467, P < 0.001) increased significantly with increasing age; other layers showed no significant differences with age. CONCLUSIONS Several macular layers and the peripapillary RNFL thickness showed significant changes correlated with age. This should be taken into consideration when analyzing macular layers and the peripapillary RNFL in SD-OCT studies of retinal diseases and glaucoma.
Vision Research | 2011
Hille W. van Dijk; Frank D. Verbraak; Marilette Stehouwer; Pauline H. B. Kok; Mona K. Garvin; Milan Sonka; J. Hans DeVries; Reinier O. Schlingemann; Michael D. Abràmoff
Diabetic retinopathy (DR) classically presents with micro-aneurysms, small haemorrhages and/or lipoprotein exudates. Several studies have indicated that neural loss occurs in DR even before vascular damage can be observed. This study evaluated the possible relationship between structure (spectral domain-optical coherence tomography) and function (Rarebit visual field test) in patients with type 1 diabetes mellitus and no or minimal diabetic retinopathy (DR). Results demonstrated loss of macular visual function and corresponding thinning of the ganglion cell layer (GCL) in the pericentral area of the macula of diabetic patients (Rs = 0.65, p < 0.001). In multivariable logistic regression analysis, GCL thickness remained an independent predictor of decreased visual function (OR 1.5, 95% CI 1.1-2.1). Early DR seems to include a neurodegenerative component.
Acta Ophthalmologica | 2013
Pauline H. B. Kok; T. Berg; Hille W. van Dijk; Marilette Stehouwer; Ivanka J. E. van der Meulen; Maarten P. Mourits; Frank D. Verbraak
Purpose: The purpose of this study was to model the influence of cataract on Spectral Domain Optical Coherence Tomography (SDOCT) image quality and Retinal Nerve Fibre Layer (RNFL) thickness measurements.
Investigative Ophthalmology & Visual Science | 2009
Pauline H. B. Kok; Hille W. van Dijk; T. Berg; Frank D. Verbraak
PURPOSE The loss of quality of optical coherence tomography (OCT) images resulting from disturbances in the optical media has been modeled. METHODS OCT measurements were performed in two healthy volunteers using time domain (TD)-OCT (StratusOCT; Carl Zeiss Meditec, Dublin, CA). Optical disturbances were approached in three ways simulated with filters. The studied effects were: light attenuation (absorptive and reflective filters), refractive aberrations (defocusing lenses), and light scattering/straylight (scattering filters). The same examiner scanned the subjects with the filters placed in front of the eye. The signal strength (SS) values of the scans were then collected. The strength of the filters were expressed in optical density (OD), determined for the 830 nm central wavelength of the OCT, (OD(lambda=830)). RESULTS A linear relationship has been found between the OD(lambda=830) of the absorptive and reflective filters and the SS of the corresponding OCT images. Assuming that reduction of light from the OCT scanning spot on the retina is the critical factor, this light loss was determined for the scattering filters and defocusing lenses. A comparable linear relationship was found between the SS value and the OD(lambda=830) of these filters. CONCLUSIONS The model indicates that the loss of OCT image quality in patients with disturbances in the optical media is explained by attenuation of the light in the OCT scanning spot on the retina. A linear relationship between the SS and the single pass logarithmic attenuation of the OCT signal is shown, according to SS=constant-(9.9 [-9.4 to -10.6] x OD(lambda=830)).
Acta Ophthalmologica | 2013
Hille W. van Dijk; Frank D. Verbraak; Pauline H. B. Kok; Sarit Y. Lesnik Oberstein; Reinier O. Schlingemann; Stephen R. Russell; Michael D. Abràmoff
Purpose: To establish whether differences in the assessment of diabetic macular oedema (DME) with either optical coherence tomography (OCT) or stereoscopic biomicroscopy lead to variability in the photocoagulation treatment of DME.
British Journal of Ophthalmology | 2013
Pauline H. B. Kok; Hille W. van Dijk; Marilette Stehouwer; T. Berg; Reinier O. Schlingemann; Frank D. Verbraak
Optical coherence tomography (OCT) has become a successful application in ophthalmology. Time-domain OCT (Stratus, Carl Zeiss Meditec) has been overtaken by spectral-domain OCT (SDOCT) which has major advances in imaging speed, sensitivity and image resolution.1 ,2 Several SDOCT devices are commercially available. In this small study, we assessed the change in subjective image quality and image quality parameter (IQP) provided by four different SDOCT devices using artificial filters simulating optical eye media disturbances. In four healthy subjects, single non-averaged B-scans of the macula were acquired using four commercially available SDOCT systems: 1. 3D OCT-1000 MarkII (Topcon Medical Systems, Inc, Oakland, New Jersey, USA): Software V.3.21, 27.000 A-scans per second, superluminescent diode 840 nm light source, 5–6 micron axial resolution, ‘Q-factor’ IQP scale 0–100. 2. Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, California, USA): Software V.2.0, 27.000 A-scans per second, superluminescent diode 840 nm light source, 5 micron axial resolution, ‘Signal Strength’ IQP scale 0–10. 3. RTVue OCT (Optovue, Inc, Fremont, California, …