Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hilton C. Deeth is active.

Publication


Featured researches published by Hilton C. Deeth.


International Dairy Journal | 2003

Evaluation of encapsulation techniques of probiotics for yoghurt

Wunwisa Krasaekoopt; Bhesh Bhandari; Hilton C. Deeth

Abstract The health benefits provided by probiotic bacteria have led to their increasing use in fermented and other dairy products. However, their viability in these products is low. Encapsulation has been investigated to protect the bacteria in the products environment and improve their survival. There are two common encapsulation techniques, namely extrusion and emulsion, to encapsulate the probiotics for their use in the fermented and other dairy products. This review evaluates the merits and limitations of these two techniques, and also discusses the supporting materials and special treatments used in encapsulation processes.


Journal of Food Protection | 1980

Yogurt technology and biochemistry.

A. Y. Tamime; Hilton C. Deeth

This review considers the physical and chemical changes which occur during yogurt manufacture as a result of processing and microbial fermentation. Changes produced during processes, such as heat treatment and physical manipulations, are reviewed. Microbial fermentation is discussed in terms of the characteristics of the yogurt organisms, Lactobacillus bulgaricus and Streptococcus thermophilus , and the biochemical reactions involved in carbohydrate metabolism, flavor production, proteolysis and lipolysis.


International Journal of Food Microbiology | 2003

Combining nonthermal technologies to control foodborne microorganisms

Alexander I.V. Ross; Mansel W. Griffiths; Gauri S. Mittal; Hilton C. Deeth

Novel nonthermal processes, such as high hydrostatic pressure (HHP), pulsed electric fields (PEFs), ionizing radiation and ultrasonication, are able to inactivate microorganisms at ambient or sublethal temperatures. Many of these processes require very high treatment intensities, however, to achieve adequate microbial destruction in low-acid foods. Combining nonthermal processes with conventional preservation methods enhances their antimicrobial effect so that lower process intensities can be used. Combining two or more nonthermal processes can also enhance microbial inactivation and allow the use of lower individual treatment intensities. For conventional preservation treatments, optimal microbial control is achieved through the hurdle concept, with synergistic effects resulting from different components of the microbial cell being targeted simultaneously. The mechanisms of inactivation by nonthermal processes are still unclear; thus, the bases of synergistic combinations remain speculative. This paper reviews literature on the antimicrobial efficiencies of nonthermal processes combined with conventional and novel nonthermal technologies. Where possible, the proposed mechanisms of synergy is mentioned.


Critical Reviews in Food Science and Nutrition | 2009

Biogenic Amines in Fish: Roles in Intoxication, Spoilage, and Nitrosamine Formation—A Review

Ismail M. Al Bulushi; Susan E. Poole; Hilton C. Deeth; Gary A. Dykes

Biogenic amines are non-volatile amines formed by decarboxylation of amino acids. Although many biogenic amines have been found in fish, only histamine, cadaverine, and putrescine have been found to be significant in fish safety and quality determination. Despite a widely reported association between histamine and scombroid food poisoning, histamine alone appears to be insufficient to cause food toxicity. Putrescine and cadaverine have been suggested to potentiate histamine toxicity. With respect to spoilage on the other hand, only cadaverine has been found to be a useful index of the initial stage of fish decomposition. The relationship between biogenic amines, sensory evaluation, and trimethylamine during spoilage are influenced by bacterial composition and free amino acid content. A mesophilic bacterial count of log 6–7 cfu/g has been found to be associated with 5 mg histamine/100 g fish, the Food and Drug Administration (FDA) maximum allowable histamine level. In vitro studies have shown the involvement of cadaverine and putrescine in the formation of nitrosamines, nitrosopiperidine (NPIP), and nitrosopyrrolidine (NPYR), respectively. In addition, impure salt, high temperature, and low pH enhance nitrosamine formation, whereas pure sodium chloride inhibits their formation. Understanding the relationships between biogenic amines and their involvement in the formation of nitrosamines could explain the mechanism of scombroid poisoning and assure the safety of many fish products.


Food and Bioproducts Processing | 2001

Age gelation of UHT milk - A review

Nivedita Datta; Hilton C. Deeth

Gelation of UHT milk during storage (age gelation) is a major factor limiting its shelf-life. The gel which forms is a three-dimensional protein matrix initiated by interactions between the whey protein beta -lactoglobulin and the kappa -casein of the casein micelle during the high heat treatment. These interactions lead to the formation of a beta -lactoglobulin-kappa -casein complex (beta kappa -complex). A feasible mechanism of age gelation is based on a two-step process; in the first step, the beta kappa -complexes dissociate from the casein micelles due to the breakdown of multiple anchor sites on kappa -casein, and in the second step, these complexes aggregate into a three-dimensional matrix. When a critical volume concentration of the beta kappa -complex is attained, a gel of custard-like consistency is formed. Significant factors which influence the onset of gelation include the nature of the heat treatment, proteolysis during storage, milk composition and quality, seasonal milk production factors and storage temperature. In this review, age gelation is discussed in terms of these factors, causative mechanisms and procedures for controlling it.


Lwt - Food Science and Technology | 2003

Diagnosing the cause of proteolysis in UHT milk

Nivedita Datta; Hilton C. Deeth

Proteolysis of UHT milk during storage at room temperature is a major factor limiting its shelf-life through changes in its flavour and texture. The latter is characterised by increases in viscosity leading in some cases to gel formation. The enzymes responsible for the proteolysis are the native milk alkaline proteinase, plasmin, and heat-stable, extracellular bacterial proteinases produced by psychrotrophic bacterial contaminants in the milk prior to heat processing. These proteinases react differently with the milk proteins and produce different peptides in the UHT milk. In order to differentiate these peptide products, reversed-phase HPLC and the fluorescamine method were used to analyse the peptides soluble in 12% trichloroacetic acid (TCA) and those soluble at pH 4.6. The TCA filtrate showed substantial peptide peaks only if the milk was contaminated by bacterial proteinase, while the pH 4.6 filtrate showed peptide peaks when either or both bacterial and native milk proteinases caused the proteolysis. Results from the fluorescamine test were in accordance with the HPLC results whereby the TCA filtrate exhibited significant proteolysis values only when bacterial proteinases were present, but the pH 4.6 filtrates showed significant values when the milk contained either or both types of proteinase. A procedure based on these analyses is proposed as a diagnostic test for determining which type of proteinase-milk plasmin, bacterial proteinase, or both-is responsible for proteolysis in UHT milk


Journal of Dairy Science | 2010

Investigation of the microstructure of milk protein concentrate powders during rehydration: Alterations during storage

Arnaud Mimouni; Hilton C. Deeth; Andrew K. Whittaker; Michael J. Gidley; Bhesh Bhandari

The aim of this work was to use scanning electron microscopy to investigate the microstructure of rehydrated milk protein concentrate powder (MPC) particles. A sample preparation method for scanning electron microscopy analysis of rehydrated MPC particles is described and used to characterize the time course of dissolution and the effects of prior storage on the dissolution process. The results show that a combination of different types of interactions (e.g., bridges, direct contact) between casein micelles results in a porous, gel-like structure that restrains the dispersion of individual micelles into the surrounding liquid phase without preventing water penetration and solubilization of nonmicellar components. During storage of the powder, increased interactions occur between and within micelles, leading to compaction of micelles and the formation of a monolayer skin of casein micelles packed close together, the combination of which are proposed to be responsible for the slow dissolution of stored MPC powders.


Comprehensive Reviews in Food Science and Food Safety | 2014

Stability of Whey Proteins during Thermal Processing: A Review

Heni B. Wijayanti; Nidhi Bansal; Hilton C. Deeth

Whey proteins have many benefits due to their high nutritional value and their various applications in food products. A drawback of whey proteins is their instability to thermal processing, which leads to their denaturation, aggregation, and, under some conditions, gelation. As thermal processing is a major treatment in the processing of milk and milk products, its influence on whey proteins has been extensively studied. Understanding the mechanisms involved during each stage of denaturation and aggregation of whey proteins is critical to devising ways of improving their stability. These aspects are reviewed in this paper. Also covered are approaches to preventing or reducing heat-induced aggregation of whey proteins. Inhibition of aggregate formation has considerable potential for alleviating the problems that arise from the instability of whey proteins.


Journal of Dairy Research | 2005

Significance of frictional heating for effects of high pressure homogenisation on milk

Nivedita Datta; Maurice G. Hayes; Hilton C. Deeth; Alan L. Kelly

High pressure homogenisation (HPH) is a novel dairy processing tool, which has many effects on enzymes, microbes, fat globules and proteins in milk. The effects of HPH on milk are due to a combination of shear forces and frictional heating of the milk during processing; the relative importance of these different factors is unclear, and was the focus of this study. The effect of milk inlet temperature (in the range 10-50 degrees C) on residual plasmin, alkaline phosphatase, lactoperoxidase and lipase activities in raw whole bovine milk homogenised at 200 MPa was investigated. HPH caused significant heating of the milk; outlet temperature increased in a linear fashion (0.5887 degrees C/ degrees C, R2=0.9994) with increasing inlet temperature. As milk was held for 20 s at the final temperature before cooling, samples of the same milk were heated isothermally in glass capillary tubes for the same time/temperature combinations. Inactivation profiles of alkaline phosphatase in milk were similar for isothermal heating or HPH, indicating that loss of enzyme activity was due to heating alone. Loss of plasmin and lactoperoxidase activity in HPH milk, however, was greater than that in heated milk. Large differences in residual lipase activities in milks subjected to heating or HPH were observed due to the significant increase in lipase activity in homogenised milk. Denaturation of beta-lactoglobulin was more extensive following HPH than the equivalent heat treatment. Inactivation of plasmin was correlated with increasing fat/serum interfacial area but was not correlated with denaturation of beta-lactoglobulin. Thus, while some effects of HPH on milk are due to thermal effects alone, many are induced by the combination of forces and heating to which the milk is exposed during HPH.


Journal of Dairy Research | 2005

Heat-induced and other chemical changes in commercial UHT milks

Anthony J. Elliott; Nivedita Datta; Boka Amenu; Hilton C. Deeth

The properties of commercial directly and indirectly heated UHT milks, both after heating and during storage at room temperature for 24 weeks, were studied. Thermally induced changes were examined by changes in lactulose, furosine and acid-soluble whey proteins. The results confirmed previous reports that directly heated UHT milks suffer less heat damage than indirectly heated milk. During storage, furosine increased and bovine serum albumin in directly heat-treated milks decreased significantly. The changes in lactulose, alpha-lactalbumin and beta-lactoglobulin were not statistically significant. The data suggest that heat treatment indicators should be measured as soon as possible after processing to avoid any misinterpretations of the intensity of the heat treatment.

Collaboration


Dive into the Hilton C. Deeth's collaboration.

Top Co-Authors

Avatar

Nivedita Datta

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Bhesh Bhandari

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nidhi Bansal

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge