Himanshu Sekhar Jena
Indian Institutes of Science Education and Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Himanshu Sekhar Jena.
Inorganic Chemistry | 2014
Soumava Biswas; Himanshu Sekhar Jena; Amit Adhikary; Sanjit Konar
Two isostructural lanthanide-based 3D coordination networks [Ln = Gd(3+) (1), Dy(3+)(2)] with densely packed distorted cuboid nanoscopic cages are reported for the first time. Magnetic characterization reveals that complex 1 shows a significant cryogenic magnetocaloric effect (-ΔSm = 44 J kg(-1) K(-1)), whereas 2 shows slow relaxation of magnetization.
Inorganic Chemistry | 2014
Javeed Ahmad Sheikh; Amit Adhikary; Himanshu Sekhar Jena; Soumava Biswas; Sanjit Konar
The synthesis, structural characterization, and magnetic property studies of five new transition metal (M = Co, Ni) phosphonate-based cages are reported. Three substituted phenyl and benzyl phosphonate ligands [RPO3H2; R1 = p-tert-butylbenzyl, R2 = p-tert-butylphenyl, R3 = 3-chlorobenzyl] were synthesized and employed to seek out high-nuclearity cages. Complexes 1-3 are quasi-isostructural and feature a dodecanuclear metal-oxo core having the general molecular formula of [M12(μ3-OH)4 (O3PR)4(O2C(t)Bu)6 (HO2C(t)Bu)6(HCO3)6] {M = Co, Ni and R = R1 for 1 (Co12), R2 for 2, 3 (Co12, Ni12)}. The twelve metal centers are arranged at the vertices of a truncated tetrahedron in a manner similar to Keggin ion. Complex 4 is an octanuclear nickel phosphonate cage [Ni8(μ3-OH)4 (OMe)2(O3PR1)2 (O2C(t)Bu)6(HO2C(t)Bu)8], and complex 5 represents a pentadecanuclear cobalt phosphonate cage, [Co15(chp)8(chpH) (O3PR3)8(O2C(t)Bu)6], where chpH = 6-chloro-2-hydroxypyridine. Structural investigation reveals some interesting geometrical features in the molecular cores, which may provide new models in single molecular magnetic materials. Magnetic property measurements of compounds 1-5 indicate the coexistence of both antiferromagnetic and ferromagnetic interactions between magnetic centers for all cages.
Inorganic Chemistry | 2016
Amit Kumar Mondal; Himanshu Sekhar Jena; Amita Malviya; Sanjit Konar
A rare class of four tetranuclear lanthanide based quadruple stranded helicates namely, [Ln4L4(OH)2](OAc)2·xH2O (Ln = Gd(III)(1), Dy(III)(2) and x = 4, 5 respectively), [Er4L4(OH)2](NO3)2·9H2O (3), and [Dy4L4(NO3)](NO3)2·2CH3OH·H2O (4) were synthesized by employing succinohydrazone derived bis-tridentate ligand (H2L) and characterized. Structures of 1-3 are similar to each other except the nature of counterions and number of lattice water molecules. In 4, a distorted nitrate ion was arranged in a hexagonal manner holding four dysprosium centers in a slightly twisted manner. Because of the symmetrical nature of each complex, the C4 axis crosses the center of helicate resulting a pseudo-D4 coordination environment. Each ligand coordinates to lanthanide centers in helical manner forming mixture of left (Λ) and right (Δ) handed discrete units. Complex 1 exhibits antiferromagnetic exchange interaction between nearby Gd(III) centers and shows magnetic refrigeration (-ΔSm = 24.4 J kg(-1) K(-1) for ΔH = 7 T at 3 K). AC magnetic susceptibility measurements of 2 and 4 demonstrate slow relaxation behavior, with Ueff (effective energy barrier) of 20.5 and 4.6 K, respectively. As per our knowledge, complexes 1, 2, and 4 represent the first examples of aesthetically pleasing quadruple stranded helicates showing potential magnetocaloric effect and single-molecule-magnet-like behavior.
Inorganic Chemistry | 2013
Soumyabrata Goswami; Amit Adhikary; Himanshu Sekhar Jena; Soumava Biswas; Sanjit Konar
The reaction of dilithium squarate with Fe(II) perchlorate led to the formation of a new Fe(II)-based 3D MOF, [Fe3(OH)3(C4O4)(C4O4)0.5]n (1), with homoleptic squashed cuboctahedral cages. Complex 1 crystallizes in the monoclinic C2/c space group. Fe(II) centers in the complex are octahedrally coordinated by four squarate dianions in axial and equatorial positions and two hydroxyl groups in the remaining equatorial positions. The interesting structural feature of 1 is that the three-dimensional framework is an infinite extension of nanoscopic cuboctahedral cages. The framework also contains two types of voids; the larger hydrophobic ones are surrounded by aromatic squarate ligands, while the smaller ones are hydrophilic with hydroxyl groups on the surface connected by bifurcated hydrogen bonding interaction. A variable temperature magnetic study shows spin-canted long-range antiferromagnetic ordering in the low temperature regime.
Chemistry-an Asian Journal | 2015
Srinivasulu Parshamoni; Suresh Sanda; Himanshu Sekhar Jena; Sanjit Konar
The synthesis and characterization of two isoreticular metal-organic frameworks (MOFs), {[Cd(bdc)(4-bpmh)]}n⋅2 n(H2O) (1) and {[Cd(2-NH2bdc)(4-bpmh)]}n⋅2 n(H2O) (2) [bdc = benzene dicarboxylic acid; 2-NH2bdc = 2-amino benzene dicarboxylic acid; 4-bpmh = N,N-bis-pyridin-4-ylmethylene-hydrazine], are reported. Both compounds possess similar two-fold interpenetrated 3D frameworks bridged by dicarboxylates and a 4-bpmh linker. The 2D Cd-dicarboxylate layers are extended along the a-axis to form distorted square grids which are further pillared by 4-bpmh linkers to result in a 3D pillared-bilayer interpenetrated framework. Gas adsorption studies demonstrate that the amino-functionalized MOF 2 shows high selectivity for CO2 (8.4 wt % 273 K and 7.0 wt % 298 K) over CH4 , and the uptake amounts are almost double that of non-functional MOF 1. Iodine (I2 ) adsorption studies reveal that amino-functionalized MOF 2 exhibits a faster I2 adsorption rate and controlled delivery of I2 over the non-functionalized homolog 1.
Inorganic Chemistry | 2013
Javeed Ahmad Sheikh; Himanshu Sekhar Jena; Amit Adhikary; Sajal Khatua; Sanjit Konar
A novel octadecanuclear copper pyrazolate-phosphonate nanocage with a bowl-shaped arrangement of the copper(II) centers in the asymmetric unit is reported. Characterization of intermediates in both solid and solution states aids to propose the mechanism of such a giant aggregation. Magnetic studies affirm the presence of antiferromagnetic interactions between the adjacent copper(II) centers. Extensive supramolecular interactions result in a framework structure.
Accounts of Chemical Research | 2016
Javeed Ahmad Sheikh; Himanshu Sekhar Jena; Abraham Clearfield; Sanjit Konar
Transition metal based high nuclearity molecular magnetic cages are a very important class of compounds owing to their potential applications in fabricating new generation molecular magnets such as single molecular magnets, magnetic refrigerants, etc. Most of the reported polynuclear cages contain carboxylates or alkoxides as ligands. However, the binding ability of phosphonates with transition metal ions is stronger than the carboxylates or alkoxides. The presence of three oxygen donor sites enables phosphonates to bridge up to nine metal centers simultaneously. But very few phosphonate based transition metal cages were reported in the literature until recently, mainly because of synthetic difficulties, propensity to result in layered compounds, and also their poor crystalline properties. Accordingly, various synthetic strategies have been followed by several groups in order to overcome such synthetic difficulties. These strategies mainly include use of small preformed metal precursors, proper choice of coligands along with the phosphonate ligands, and use of sterically hindered bulky phosphonate ligands. Currently, the phosphonate system offers a library of high nuclearity transition metal and mixed metal (3d-4f) cages with aesthetically pleasing structures and interesting magnetic properties. This Account is in the form of a research landscape on our efforts to synthesize and characterize new types of phosphonate based high nuclearity paramagnetic transition metal cages. We quite often experienced synthetic difficulties with such versatile systems in assembling high nuclearity metal cages. Few methods have been emphasized for the self-assembly of phosphonate systems with suitable transition metal ions in achieving high nuclearity. We highlighted our journey from 2005 until today for phosphonate based high nuclearity transition metal cages with V(IV/V), Mn(II/III), Fe(III), Co(II), Ni(II), and Cu(II) metal ions and their magnetic properties. We observed that slight changes in stoichiometry, reaction conditions, and presence or absence of coligand played crucial roles in determining the final structure of these complexes. Most of the complexes included are regular in geometry with a dense arrangement of the above-mentioned metal centers in a confined space, and a few of them also resemble regular polygonal solids (Archimedean and Platonic). Since there needs to be a historical approach for a comparative study, significant research output reported by other groups is also compared in brief to ensure the potential of phosphonate ligands in synthesizing high nuclearity magnetic cages.
RSC Advances | 2013
Sajal Khatua; Soumyabrata Goswami; Srinivasulu Parshamoni; Himanshu Sekhar Jena; Sanjit Konar
A 2D MOF with the secondary building unit [Co3(CTC)6(Py)2(OH)2] is synthesized using the sodium salt of a flexible ligand, cis,cis-cyclohexane-1,3,5-tricarboxylate (Na-CTC), and a cobalt trimer ([Co3O(CH3COO)6(Py)3]·ClO4). Structural analysis shows that the complex crystallizes in the monoclinic space group P21/n and forms a 2D framework with channel sizes of 9.0 × 4.2 A2. Magnetic characterization shows spin-canting ferromagnetic behaviour at low temperatures. Frequency dependency for in-phase (χ′M) and out-of-phase (χ′′M) signals at low temperatures is observed from the AC measurements. The gas adsorption behaviour suggests selectivity towards CO2 over N2, and demonstrates enhancement of CO2 uptake (19–33 cm3 g−1) on lowering the temperature (273–195 K).
Chemistry: A European Journal | 2015
Soumava Biswas; Himanshu Sekhar Jena; Suresh Sanda; Sanjit Konar
Three isostructural lanthanide-based two- dimensional coordination polymers (CPs) {[Ln2(L)3(H2O)2]n⋅2n CH3OH)⋅2n H2O} (Ln=Gd(3+) (1), Tb(3+) (2), Dy(3+) (3); H2L=cyclobutane-1,1-dicarboxylic acid) were synthesized by using a low molecular weight dicarboxylate ligand and characterized. Single-crystal structure analysis showed that in complexes 1-3 lanthanide centers are connected by μ3-bridging cyclobutanedicarboxylate ligands along the c axis to form a rod-shaped infinite 1D coordination chain, which is further linked with nearby chains by μ4-connected cyclobutanedicarboxylate ligands to form 2D CPs in the bc plane. Viewing the packing of the complexes down the b axis reveals that the lattice methanol molecules are located in the interlayer space between the adjacent 2D layers and form H-bonds with lattice and coordinated water molecules to form 1D chains. Magnetic properties of complexes 1-3 were thoroughly investigated. Complex 1 exhibits dominant ferromagnetic interaction between two nearby gadolinium centers and also acts as a cryogenic magnetic refrigerant having a significant magnetic entropy change of -ΔSm=32.8 J kg(-1) K(-1) for ΔH=7 T at 4 K (calculated from isothermal magnetization data). Complex 3 shows slow relaxation of magnetization below 10 K. Impedance analysis revealed that the complexes show humidity-dependent proton conductivity (σ=1.5×10(-5) S cm(-1) for 1, σ=2.07×10(-4) S cm(-1) for 2, and σ=1.1×10(-3) S cm(-1) for 3) at elevated temperature (>75 °C). They retain the conductivity for up to 10 h at high temperature and high humidity. Furthermore, the proton conductivity results were correlated with the number of water molecules from the water-vapor adsorption measurements. Water-vapor adsorption studies showed hysteretic and two-step water vapor adsorption (182,000 μL g(-1) for 1, 184,000 μL g(-1) for 2, and 1,874,000 μL g(-1) for 3) in the experimental pressure range. Simulation of water-vapor adsorption by the Monte Carlo method (for 1) confirmed the high density of adsorbed water molecules, preferentially in the interlayer space between the 2D layers.
CrystEngComm | 2014
Suresh Sanda; Soumyabrata Goswami; Himanshu Sekhar Jena; Srinivasulu Parshamoni; Sanjit Konar
Three flexible metal–organic frameworks (MOFs) based on aldrithiol linker and pyromellitate ligand, namely, [Co(aldrithiol)(pyromellitate)0.5(H2O)2]n (1), [Ni2(aldrithiol)2(pyromellitate)(H2O)2]n·2n(C2H5OH)·11n(H2O) (2) and [Cu(aldrithiol)2(pyromellitate)]n·2n(H2O) (3) have been synthesized through slow diffusion technique and characterized by structural, magnetic and adsorption studies. Single crystal X-ray studies show that compounds 1 and 3 have two-dimensional layered structures, whereas compound 2 adopts a three-dimensional framework structure. The observed dimensionality change might be due to the different orientation of pyridine rings in the flexible aldrithiol linker and versatile bridging modes of the pyromellitate ligand. In 1 and 2, the pyromellitate ligand coordinates to the metal centre in a monodentate fashion {(κ1)-(κ1)-(κ1)-(κ1)-μ4} and in 3, it coordinates in {(κ1)-(κ1)-μ2} fashion. The magnetic properties of 1–3 were investigated in detail and show weak antiferromagnetic coupling among the metal centres. Vapour sorption studies reveal that compounds 1 and 3 show high methanol vapour uptake, whereas compound 2 shows a decent amount of H2O adsorption. The dehydrated frameworks of 1–3 regenerate the as-synthesized framework structures upon exposure to water vapour.