Himanshu Tyagi
Indian Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Himanshu Tyagi.
IEEE Transactions on Information Theory | 2011
Himanshu Tyagi; Prakash Narayan; Piyush Gupta
A subset of a set of terminals that observe correlated signals seek to compute a function of the signals using public communication. It is required that the value of the function be concealed from an eavesdropper with access to the communication. We show that the function is securely computable if and only if its entropy is less than the capacity of a new secrecy generation model, for which a single-letter characterization is provided.
IEEE Transactions on Information Theory | 2016
Masahito Hayashi; Himanshu Tyagi; Shun Watanabe
We revisit the problem of secret key agreement using interactive public communication for two parties and propose a new secret key agreement protocol. The protocol attains the secret key capacity for general observations and attains the second-order asymptotic term in the maximum length of a secret key for independent and identically distributed observations. In contrast to the previously suggested secret key agreement protocols, the proposed protocol uses interactive communication. In fact, the standard one-way communication protocol used prior to this paper fails to attain the asymptotic results above. Our converse proofs rely on a recently established upper bound for secret key lengths. Both our lower and upper bounds are derived in a single-shot setup and the asymptotic results are obtained as corollaries.
IEEE Transactions on Information Theory | 2015
Himanshu Tyagi; Shun Watanabe
We consider information theoretic secret key (SK) agreement and secure function computation by multiple parties observing correlated data, with access to an interactive public communication channel. Our main result is an upper bound on the SK length, which is derived using a reduction of binary hypothesis testing to multiparty SK agreement. Building on this basic result, we derive new converses for multiparty SK agreement. Furthermore, we derive converse results for the oblivious transfer problem and the bit commitment problem by relating them to SK agreement. Finally, we derive a necessary condition for the feasibility of secure computation by trusted parties that seek to compute a function of their collective data, using an interactive public communication that by itself does not give away the value of the function. In many cases, we strengthen and improve upon previously known converse bounds. Our results are single-shot and use only the given joint distribution of the correlated observations. For the case when the correlated observations consist of independent and identically distributed (in time) sequences, we derive strong versions of previously known converses.
IEEE Transactions on Information Theory | 2013
Himanshu Tyagi
We study the generation of a secret key of maximum rate by a pair of terminals observing correlated sources and with the means to communicate over a noiseless public communication channel. Our main result establishes a structural equivalence between the generation of a maximum rate secret key and the generation of a common randomness that renders the observations of the two terminals conditionally independent. The minimum rate of such common randomness, termed interactive common information, is related to Wyners notion of common information, and serves to characterize the minimum rate of interactive public communication required to generate an optimum rate secret key. This characterization yields a single-letter expression for the aforementioned communication rate when the number of rounds of interaction are bounded. An application of our results shows that interaction does not reduce this rate for binary symmetric sources. Further, we provide an example for which interaction does reduce the minimum rate of communication. Also, certain invariance properties of common information quantities are established that may be of independent interest.
theory and application of cryptographic techniques | 2014
Himanshu Tyagi; Shun Watanabe
We consider secret key agreement by multiple parties observing correlated data and communicating interactively over an insecure communication channel. Our main contribution is a single-shot upper bound on the length of the secret keys that can be generated, without making any assumptions on the distribution of the underlying data. Heuristically, we bound the secret key length in terms of “how far” is the joint distribution of the initial observations of the parties and the eavesdropper from a distribution that renders the observations of the parties conditionally independent across some partition, when conditioned on the eavesdropper’s side information. The closeness of the two distributions is measured in terms of the exponent of the probability of error of type II for a binary hypothesis testing problem, thus bringing out a structural connection between secret key agreement and binary hypothesis testing. When the underlying data consists of an independent and identically distributed sequence, an application of our bound recovers several known upper bounds for the asymptotic rate of a secret key that can be generated, without requiring the agreement error probability or the security index to vanish to 0 asymptotically.
international symposium on information theory | 2014
Himanshu Tyagi; Alexander Vardy
We extend the Bellare-Tessaro coding scheme for a discrete, degraded, symmetric wiretap channel to a Gaussian wiretap channel. Denoting by SNR the signal-to-noise ratio of the eavesdroppers channel, the proposed scheme converts a transmission code of rate R for the channel of the legitimate receiver into a code of rate R-0.5 log(1+SNR) for the Gaussian wiretap channel. The conversion has a polynomial complexity in the codeword length and the proposed scheme achieves strong security. In particular, when the underlying transmission code is capacity achieving, this scheme achieves the secrecy capacity of the Gaussian wiretap channel.
Discrete Applied Mathematics | 2008
Amitabha Tripathi; Himanshu Tyagi
A finite sequence of nonnegative integers is called graphic if the terms in the sequence can be realized as the degrees of vertices of a finite simple graph. We present two new characterizations of graphic sequences. The first of these is similar to a result of Havel-Hakimi, and the second equivalent to a result of Erdos & Gallai, thus providing a short proof of the latter result. We also show how some known results concerning degree sets and degree sequences follow from our results.
allerton conference on communication, control, and computing | 2014
Masahito Hayashi; Himanshu Tyagi; Shun Watanabe
We establish an upper bound on the rate of codes for a wiretap channel with public feedback for a fixed probability of error and secrecy parameter. As a corollary, we obtain a strong converse for the capacity of a degraded wiretap channel with public feedback. Our converse proof is based on a reduction of active hypothesis testing for discriminating between two channels to coding for wiretap channel with feedback.
international symposium on information theory | 2011
Himanshu Tyagi; Prakash Narayan; Piyush Gupta
A subset of a set of terminals that observe correlated signals seek to compute a function of the signals using public communication. It is required that the value of the function be concealed from an eavesdropper with access to the communication. We show that the function is securely computable if and only if its entropy is less than the capacity of a new secrecy generation model, for which a single-letter characterization is provided.
international symposium on information theory | 2009
Himanshu Tyagi; Prakash Narayan
We consider a Gelfand-Pinsker discrete memoryless channel (DMC) model and provide a strong converse for its capacity. The strong converse is then used to obtain an upper bound on the reliability function. Instrumental in our proofs is a new technical lemma which provides an upper bound for the rate of codes with codewords that are conditionally typical over large message dependent subsets of a typical set of state sequences. This technical result is a nonstraightforward analog of a known result for a DMC without states that provides an upper bound on the rate of a good code with codewords of a fixed type (to be found in, for instance, the Csiszár-Kürner book).