Himansu Kumar
Indian Institute of Information Technology, Allahabad
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Himansu Kumar.
Journal of Biomolecular Structure & Dynamics | 2015
Saurabh Gupta; Alka Jadaun; Himansu Kumar; Pritish Kumar Varadwaj; A. R. Rao
Protein phosphorylation is an important mechanism that implicates in physiology of any organism including parasitic protozoa. Metallic protein Ser/Thr protein phosphatase 5 (PP5) controls various cellular signaling pathways of Plasmodium falciparum. The structure and inhibitory mechanism of PP5 in P. falciparum is not known. In fact, no experimental structural data are available for P. falciparum Ser/Thr protein phosphatase 5 (PfPP5) till date. Hence, we have proposed computer-generated model of catalytic subunit of PfPP5 and its inhibitory mechanism was analyzed. A set of 42 known natural inhibitors of protein phosphate family were docked against metal-binding catalytic site of PfPP5 and we found that cantharidin and its derivatives shows better binding energy among them. Similarity search was performed by taking these compounds as lead compounds against PubChem and ChemBank. The search result provides 3703 similar compounds; out of which 2245 qualified the Lipinski rule of five. Further, virtual screening of these compounds was performed and selected top 25 were selected on the basis of binding energy. In continuation, rigid and flexible docking of these screened compounds was performed to get the insight of interactions. Finally, top 5 compounds were verified for ADMET properties, and then, all are subjected to MD simulations for 25 ns in order to validate their stability. Compounds CBI: 3554182, CID: 23561913, and CID: 21168680 showed most stable binding, although some of hydrogen bonds pairing varied throughout simulation. These finding would be helpful to the medicinal chemists for the development of antimalarial drugs to combat this deadly disease.
Journal of Biomolecular Structure & Dynamics | 2017
Himansu Kumar; Pritish Kumar Varadwaj
Bromodomains (BRDs) are the epigenetic proteins responsible for transcriptional regulation through its interaction with methylated or acetylated histone residues. The lysine residues of Bromodomain-1 (BD1) of Brd4 undergo ε-N-Acetylation posttranslational modifications to control transcription of genes. Due to its role in diverse cellular functions, Brd4 of bromodomain family, was considered as a prominent target for many diseases such as cancer, obesity, kidney disease, lung fibrosis, inflammatory diseases, etc. In this study, an attempt has been made to screen compounds from flavonoids and extended flavonoids libraries targeting acetylated lysine (KAc) binding site of BD1 of Brd4 using docking and molecular dynamics simulations. Two different docking programs AutoDock and Glide were used to compare their suitability for the receptor. Interestingly, in both the docking programs, the screened flavonoids have occupied the same binding pocket confirming the selection of active site. Further the MMGBSA binding free energy calculations and ADME analysis were carried out on screened compounds to establish their anti-cancerous properties. We have identified a flavonoid which shows docking and Glide e-model score comparatively much higher than those of already reported known inhibitors against Brd4. The protein-ligand complex with top-ranked flavonoid was used for dynamics simulation study for 50 ns in order to validate its stability inside the active site of Brd4 receptor. The results provide valuable information for structure-based drug design of Brd4 inhibitors.
Journal of Biomolecular Structure & Dynamics | 2016
Himansu Kumar; Saurabh Gupta; Pritish Kumar Varadwaj
Signal transducer and activator of transcription (STAT) proteins are latent cytoplasmic transcription factors that transduce signals from cytokines and growth factors to the nucleus and thereby regulate the expression of a variety of target genes. Although mutations of STATs have not been reported in human tumors but the activity of several members of the family, such as STAT1 and STAT5, is deregulated in a variety of human carcinoma. STAT1 and STAT5 share a structural similarity with a highly conserved SH2 domain which is responsible for the activation of STAT proteins on interaction with phosphotyrosine motifs for specific STAT-receptor contacts and STAT dimerization. The purpose of this study is to identify domain-specific dual inhibitors for both STAT1 and STAT5 proteins from a database of natural products and natural product-like compounds comprising of over 90,000 compounds. Virtual screening-based molecular docking was performed in order to find novel natural dual inhibitors. Further, the study was supported by the 50-ns molecular dynamics simulation for receptor–ligand complexes (STAT1-STOCK-1N-69677 and STAT5-STOCK-1N-69677). Analysis of molecular interactions in the SH2 domains of both STAT1 and STAT5 proteins with the ligand revealed few conserved amino acid residues which are responsible to stabilize the ligands within the binding pocket through bonded and non-bonded interactions. This study suggested that compound STOCK-1N-69677 might putatively act as a dual inhibitor of STAT1 and STAT5 receptors, through its binding to the SH2 domain.
Bioinformation | 2013
Cvs Siva Prasad; Saurabh Gupta; Himansu Kumar; Murlidhar Tiwari
The essential and ubiquitous enzyme fructose bisphosphate aldolase (FBPA) has been a good target for controlling the various types of infections caused by pathogens and parasites. The parasitic infections of nematodes are the major concern of scientific community, leading to biochemical characterization of this enzyme. In this work we have developed a small dataset of all types of FBPA sequences collected from publically available databases (EMBL, NCBI and Uni-Port). The Phylogenetic study shows that evolutionary relationships among sequences of FBPA are clustered into three main groups. FBPA sequences of Globodera rostochiensis (FBPA_GR) and Heterodera glycines (FBPA_HG) are placed in group II, sharing the similar evolutionary relationship. The catalytic mechanism of these enzymes depends upon which class of aldolase, it belongs. The class of enzyme has been confirmed on the basis of sequences and structural similarity with template structure of class I FBPA. To confirm catalytic mechanism of above said model structures, the known substrate fructose-1, 6-bisphosphate (FBP) and competitive inhibitor Mannitol-1, 6 bisphosphate (MBP) were docked at known catalytic site of enzyme of interest. The comparative docking analysis shows that enzyme-substrate complex is forming similar Schiff base intermediate and conducts C3–C4 bond cleavage by forming Hydrogen bonding with reaction catalyzing Glu-191, reactive Lys-150, and Schiff base forming Lys-233. On the other hand enzymeinhibitor noncovalent complex is forming cabinolamine precursor and the proton transfer by the formation of hydrogen bond between MBP O2 with Glu191 enabling stabilization of cabinolamine transition state, which confirms the similar inhibition mechanism. Thus we conclude that Plant Parasitic Nematodes (PPNs) have evolutionary and functional relationship with the class I aldolase enzyme. Hence, FBPA can be targeted to control plant parasitic nematodes.
Interdisciplinary Sciences: Computational Life Sciences | 2018
Saurabh Gupta; Yashbir Singh; Himansu Kumar; A. R. Rao; Pritish Kumar Varadwaj
Cereal grain bread wheat (T. aestivum) is an important source of food and belongs to Poaceae family. Hypothetical proteins (HPs), i.e., proteins with unknown functions, share a substantial portion of wheat proteomes and play important roles in growth and physiology of plant system. Several functional annotations studies utilizing the protein sequences for characterization of role of individual protein in physiology of plant systems were being reported in recent past. In this study, an integrated pipeline of software/servers has been used for the identification and functional annotation of 124 unique HPs of T. aestivum considering available data in NCBI till date. All HPs were broadly annotated, out of which functions of 77 HPs were successfully assigned with high confidence level. Precisely functional annotation of remaining 47 HPs is also characterized with low confidence. Several latest versions of protein family databases, pathways information, genomics context methods and in silico tools were utilized to identify and assign function for individual HPs. Annotation result of several HPs mainly belongs to cellular protein, metabolic enzymes, binding proteins, transmembrane proteins, transcription factors and photosystem regulator proteins. Subsequently, functional analysis has revealed the role of few HPs in abiotic stress, which were further verified by phylogenetic analysis. The functionally associated proteins with each of above-mentioned abiotic stress-related proteins were identified through protein–protein interaction network analysis. The outcome of this study may be helpful for formulating general set pipeline/protocols for a better understanding of the role of HPs in physiological development of various plant systems.
Journal of Biomolecular Structure & Dynamics | 2016
Himansu Kumar; Saurabh Gupta; Pritish Kumar Varadwaj
Aberrant and proliferative expression of the oncogene BCR-ABL in the bone marrow cells had been proven as the prime cause of chronic myeloid leukemia (CML). It has been established that tyrosine kinase domain of BCR-ABL protein is a potential therapeutic target for the treatment of CML. Imatinib is considered as a first-generation drug that can inhibit the enzymatic action by inhibiting the ATP binding with BCR-ABL protein. Later on, insensitivity of CML cells towards Imatinib has been observed may be due to mutation in tyrosine kinase domain of the ABL receptor. Subsequently, some other second-generation drugs have also been reported viz. Baustinib, Nilotinib, Dasatinib, Ponatinib, Bafetinib, etc., which can able to combat against mutated domain of ABL tyrosine kinase protein. By taking into account of bioavailability and resistance developed, there is an utmost need to find some more inhibitors for the mutated ABL tyrosine kinase protein. For virtual screening, a data-set has been generated by collecting the all available drug like natural compounds from ZINC and Drug Bank databases. Comparative docking analysis was also carried out on the active site of ABL tyrosine kinase receptor with reported reference inhibitors. Molecular dynamics simulation of the best screened interacting complex was done for 50 ns to validate the stability of the system. These selected inhibitors were further validated and analyzed through pharmacokinetics properties and series of ADMET parameters by in silico methods. Considering the above said parameters proposed molecules are concluded as potential leads for drug designing pipeline against CML.
Asian Pacific Journal of Cancer Prevention | 2015
Himansu Kumar; Saurabh Gupta; Pritish Kumar Varadwaj
BACKGROUND The human protein methyl-transferase DOT1L catalyzes the methylation of histone H3 on lysine 79 (H3K79) at homeobox genes and is also involved in a number of significant processes ranging from gene expression to DNA-damage response and cell cycle progression. Inhibition of DOT1L activity by shRNA or small-molecule inhibitors has been established to prevent proliferation of various MLL-rearranged leukemia cells in vitro, establishing DOT1L an attractive therapeutic target for mixed lineage leukemia (MLL). Most of the drugs currently in use for the MLL treatment are reported to have low efficacy, hence this study focused on various natural compounds which exhibit minimal toxic effects and high efficacy for the target receptor. MATERIALS AND METHODS Structures of human protein methyl-transferase DOT1L and natural compound databases were downloaded from various sources. Virtual screening, molecular docking, dynamics simulation and drug likeness studies were performed for those natural compounds to evaluate and analyze their anti-cancer activity. RESULTS The top five screened compounds possessing good binding affinity were identified as potential high affinity inhibitors against DOT1Ls active site. The top ranking molecule amongst the screened ligands had a Glide g-score of -10.940 kcal/mol and Glide e-model score of -86.011 with 5 hydrogen bonds and 12 hydrophobic contacts. This ligands behaviour also showed consistency during the simulation of protein-ligand complex for 20000 ps, which is indicative of its stability in the receptor pocket. CONCLUSIONS The ligand obtained out of this screening study can be considered as a potential inhibitor for DOT1L and further can be treated as a lead for the drug designing pipeline.
Journal of Nuclear Medicine and Radiation Therapy | 2015
Himansu Kumar; Saurabh Gupta; Rashmi Tripathi; Pritish Kumar Varadwaj
Chronic Myeloid Leukemia (CML) is a stem cell disorder, characterized by the translocation of 9th chromosome of Abelson (ABL) gene to the 22th chromosome of breakpoint cluster region (BCR) gene. Consequently, translocation results into the chimeric oncogene BCR-ABL which encodes the BCR-ABL oncoprotein. CML is mainly a disease of adults but it can occur in any stage of life and it accounts around 15% of the all the types of leukemia. Various methods have been used to combat this disease like Chemotherapy, Radiation therapy; tyrosine kinase inhibitors etc., Imatinib as a tyrosine kinase inhibitor has dramatically improved the survival rate of CML patients, hence can be referred as first generation drug against the CML. Later on, recurrence of the disease in some treated patients has also been seen probably due to mutation in oncogenes. Researchers have started to find out more efficient tyrosine kinase inhibitors which can work on mutated oncoprotein and which can be referred as second or third generation drugs. In this review, special emphasis have been given to the carcinogenic mechanism of abnormal fusion of the BCR-ABL genes, current therapeutic options to prevent this disease, and Systems Biology approach to explore the CML associated biochemical pathways. Various advantages and disadvantages of the all therapeutic options to combat CML have also been discussed.
Enzyme Engineering | 2015
Yashasvi Jain; Himansu Kumar; Saurabh Gupta; Rashmi Tripathi; Pritish Kumar Varadwaj
Type 2 diabetes mellitus is caused mainly due to an imbalance in the relationship between glucagon and insulin levels in plasma. To counteract the actions of insulin and maintain normoglycemia during the fasting state by inducing hepatic glucose production are the major biological action of glucagon. Glucagon exerts its action through activation of the glucagon receptor (GCGR). These observations have prompted interest in blockade of GCGR activity for the control of over production of hepatic glucose or the treatment of type 2 diabetes mellitus. In the present study, a large virtual library of compounds was screened against the crystal structure of GCGR to identify a favorable therapeutic choice of GCGR antagonist. The interactions of lead compound with the active site of GCGR were analyzed and molecular dynamics study was also performed to check its stability in the receptor pocket. The proposed lead compound was also compared with some already reported GCGR antagonists for their binding affinity and other pharmacological properties. As a conclusion of this study, we have identified a compound STOCK1N82694 as potent GCGR antagonist for the treatment of type 2 diabetes mellitus.
Asian Pacific Journal of Cancer Prevention | 2015
Himansu Kumar; Swapnil Tichkule; Saurabh Gupta; Swati Srivastava; Pritish Kumar Varadwaj
BACKGROUND Chronic myeloid leukemia (CML) is a stem cell disorder characterized by the fusion of two oncogenes namely BCR and ABL with their aberrant expression. Autophosphorylation of BCR-ABL oncogenes results in proliferation of CML. The study deals with estimation of rate constant involved in each step of the cellular autophosphorylation process, which are consequently playing important roles in the proliferation of cancerous cells. MATERIALS AND METHODS A mathematical model was proposed for autophosphorylation of BCR-ABL oncogenes utilizing ordinary differential equations to enumerate the rate of change of each responsible system component. The major difficulty to model this process is the lack of experimental data, which are needed to estimate unknown model parameters. Initial concentration data of each substrate and product for BCR-ABL systems were collected from the reported literature. All parameters were optimized through time interval simulation using the fminsearch algorithm. RESULTS The rate of change versus time was estimated to indicate the role of each state variable that are crucial for the systems. The time wise change in concentration of substrate shows the convergence of each parameter in autophosphorylation process. CONCLUSIONS The role of each constituent parameter and their relative time dependent variations in autophosphorylation process could be inferred.