Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Himchan Cho is active.

Publication


Featured researches published by Himchan Cho.


Science | 2015

Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes

Himchan Cho; Su-Hun Jeong; Min-Ho Park; Young Hoon Kim; Christoph Wolf; Chang-Lyoul Lee; Jin Hyuck Heo; Aditya Sadhanala; NoSoung Myoung; Seunghyup Yoo; Sang Hyuk Im; Richard H. Friend; Tae-Woo Lee

Brighter perovskite LEDs Organic-inorganic hybrid perovskites such as methyl ammonium lead halides are attractive as low-cost light-emitting diode (LED) emitters. This is because, unlike many inorganic nanomaterials, they have very high color purity. Cho et al. made two modifications to address the main drawback of these materials, their low luminescent efficiency. They created nanograin materials lacking free metallic lead, which helped to confine excitons and avoid their quenching. The perovskite LEDs had a current efficiency similar to that of phosphorescent organic LEDs. Science, this issue p. 1222 Efficient organic-inorganic perovskite light-emitting diodes were made with nanograin crystals that lack metallic lead. Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.


Advanced Materials | 2015

Multicolored Organic/Inorganic Hybrid Perovskite Light‐Emitting Diodes

Young Hoon Kim; Himchan Cho; Jin Hyuck Heo; Tae-Sik Kim; NoSoung Myoung; Chang-Lyoul Lee; Sang Hyuk Im; Tae-Woo Lee

Bright organic/inorganic hybrid perov-skite light-emitting diodes (PrLEDs) are realized by using CH3 NH3 PbBr3 as an emitting layer and self-organized buffer hole-injection layer (Buf-HIL). The PrLEDs show high luminance, current efficiency, and EQE of 417 cd m(-2) , 0.577 cd A(-1) , and 0.125%, respectively. Buf-HIL can facilitate hole injection into CH3 NH3 PbBr3 as well as block exciton quenching.


Nature Communications | 2013

Large-scale organic nanowire lithography and electronics

Sung-Yong Min; Tae-Sik Kim; Beom Joon Kim; Himchan Cho; Yong-Young Noh; Hoichang Yang; Jeong Ho Cho; Tae-Woo Lee

Controlled alignment and patterning of individual semiconducting nanowires at a desired position in a large area is a key requirement for electronic device applications. High-speed, large-area printing of highly aligned individual nanowires that allows control of the exact numbers of wires, and their orientations and dimensions is a significant challenge for practical electronics applications. Here we use a high-speed electrohydrodynamic organic nanowire printer to print large-area organic semiconducting nanowire arrays directly on device substrates in a precisely, individually controlled manner; this method also enables sophisticated large-area nanowire lithography for nano-electronics. We achieve a maximum field-effect mobility up to 9.7 cm(2) V(-1) s(-1) with extremely low contact resistance (<5.53 Ω cm), even in nano-channel transistors based on single-stranded semiconducting nanowires. We also demonstrate complementary inverter circuit arrays comprising well-aligned p-type and n-type organic semiconducting nanowires. Extremely fast nanolithography using printed semiconducting nanowire arrays provide a simple, reliable method of fabricating large-area and flexible nano-electronics.


Advanced Materials | 2016

Efficient Visible Quasi‐2D Perovskite Light‐Emitting Diodes

Jinwoo Byun; Himchan Cho; Christoph Wolf; Mi Jang; Aditya Sadhanala; Richard H. Friend; Hoichang Yang; Tae-Woo Lee

Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Metal halide perovskite light emitters

Young Hoon Kim; Himchan Cho; Tae-Woo Lee

Twenty years after layer-type metal halide perovskites were successfully developed, 3D metal halide perovskites (shortly, perovskites) were recently rediscovered and are attracting multidisciplinary interest from physicists, chemists, and material engineers. Perovskites have a crystal structure composed of five atoms per unit cell (ABX3) with cation A positioned at a corner, metal cation B at the center, and halide anion X at the center of six planes and unique optoelectronic properties determined by the crystal structure. Because of very narrow spectra (full width at half-maximum ≤20 nm), which are insensitive to the crystallite/grain/particle dimension and wide wavelength range (400 nm ≤ λ ≤ 780 nm), perovskites are expected to be promising high-color purity light emitters that overcome inherent problems of conventional organic and inorganic quantum dot emitters. Within the last 2 y, perovskites have already demonstrated their great potential in light-emitting diodes by showing high electroluminescence efficiency comparable to those of organic and quantum dot light-emitting diodes. This article reviews the progress of perovskite emitters in two directions of bulk perovskite polycrystalline films and perovskite nanoparticles, describes current challenges, and suggests future research directions for researchers to encourage them to collaborate and to make a synergetic effect in this rapidly emerging multidisciplinary field.


Advanced Materials | 2016

Highly Efficient, Simplified, Solution‐Processed Thermally Activated Delayed‐Fluorescence Organic Light‐Emitting Diodes

Young Hoon Kim; Christoph Wolf; Himchan Cho; Su-Hun Jeong; Tae-Woo Lee

Highly efficient, simplified, solution-processed thermally activated delayed-fluorescence organic light-emitting diodes can be realized by using pure-organic thermally activated delayed fluorescence emitters and a multifunctional buffer hole-injection layer, in which high EQE (≈24%) and current efficiency (≈73 cd A(-1) ) are demonstrated. High-efficiency fluorescence red-emitting and blue-emitting devices can also be fabricated in this manner.


Advanced Materials | 2016

Organometal Halide Perovskite Artificial Synapses.

Wentao Xu; Himchan Cho; Young Hoon Kim; Young-Tae Kim; Christoph Wolf; Chan-Gyung Park; Tae-Woo Lee

Organometal halide perovskite synaptic devices are fabricated; they emulate important working principles of a biological synapse, including excitatory postsynaptic current, paired-pulse facilitation, short-term plasticity, long-term plasticity, and spike-timing dependent plasticity. These properties originate from possible ion migration in the ion-rich perovskite matrix. This work has extensive applicability and practical significance in neuromorphic electronics.


Small | 2014

N-Doped Graphene Field-Effect Transistors with Enhanced Electron Mobility and Air-stability

Wentao Xu; Tae-Seok Lim; Hong-Kyu Seo; Sung-Yong Min; Himchan Cho; Min-Ho Park; Young Hoon Kim; Tae-Woo Lee

Although graphene can be easily p-doped by various adsorbates, developing stable n-doped graphene that is very useful for practical device applications is a difficult challenge. We investigated the doping effect of solution-processed (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine (N-DMBI) on chemical-vapor-deposited (CVD) graphene. Strong n-type doping is confirmed by Raman spectroscopy and the electrical transport characteristics of graphene field-effect transistors. The strong n-type doping effect shifts the Dirac point to around -140 V. Appropriate annealing at a low temperature of 80 ºC enables an enhanced electron mobility of 1150 cm(2) V(-1) s(-1). The work function and its uniformity on a large scale (1.2 mm × 1.2 mm) of the doped surface are evaluated using ultraviolet photoelectron spectroscopy and Kelvin probe mapping. Stable electrical properties are observed in a device aged in air for more than one month.


ACS Nano | 2017

Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals Beyond Quantum Size

Young Hoon Kim; Christoph Wolf; Young-Tae Kim; Himchan Cho; Woosung Kwon; Sungan Do; Aditya Sadhanala; Chan Gyung Park; Shi-Woo Rhee; Sang Hyuk Im; Richard H. Friend; Tae-Woo Lee

Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter DB (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > DB (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than DB show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.


Advanced Materials | 2017

High‐Efficiency Solution‐Processed Inorganic Metal Halide Perovskite Light‐Emitting Diodes

Himchan Cho; Christoph Wolf; Joo Sung Kim; Hyung Joong Yun; Jong Seong Bae; Hobeom Kim; Jung-Min Heo; Soyeong Ahn; Tae-Woo Lee

This paper reports highly bright and efficient CsPbBr3 perovskite light-emitting diodes (PeLEDs) fabricated by simple one-step spin-coating of uniform CsPbBr3 polycrystalline layers on a self-organized buffer hole injection layer and stoichiometry-controlled CsPbBr3 precursor solutions with an optimized concentration. The PeLEDs have maximum current efficiency of 5.39 cd A-1 and maximum luminance of 13752 cd m-2 . This paper also investigates the origin of current hysteresis, which can be ascribed to migration of Br- anions. Temperature dependence of the electroluminescence (EL) spectrum is measured and the origins of decreased spectrum area, spectral blue-shift, and linewidth broadening are analyzed systematically with the activation energies, and are related with Br- anion migration, thermal dissociation of excitons, thermal expansion, and electron-phonon interaction. This work provides simple ways to improve the efficiency and brightness of all-inorganic polycrystalline PeLEDs and improves understanding of temperature-dependent ion migration and EL properties in inorganic PeLEDs.

Collaboration


Dive into the Himchan Cho's collaboration.

Top Co-Authors

Avatar

Tae-Woo Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Young Hoon Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Christoph Wolf

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Su-Hun Jeong

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Min-Ho Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sung-Yong Min

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tae Hee Han

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wentao Xu

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chang-Lyoul Lee

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge