Hinke A.B. Multhaupt
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hinke A.B. Multhaupt.
Journal of Cell Biology | 2005
Atsuko Yoneda; Hinke A.B. Multhaupt; John R. Couchman
The homologous mammalian rho kinases (ROCK I and II) are assumed to be functionally redundant, based largely on kinase construct overexpression. As downstream effectors of Rho GTPases, their major substrates are myosin light chain and myosin phosphatase. Both kinases are implicated in microfilament bundle assembly and smooth muscle contractility. Here, analysis of fibroblast adhesion to fibronectin revealed that although ROCK II was more abundant, its activity was always lower than ROCK I. Specific reduction of ROCK I by siRNA resulted in loss of stress fibers and focal adhesions, despite persistent ROCK II and guanine triphosphate–bound RhoA. In contrast, the microfilament cytoskeleton was enhanced by ROCK II down-regulation. Phagocytic uptake of fibronectin-coated beads was strongly down-regulated in ROCK II–depleted cells but not those lacking ROCK I. These effects originated in part from distinct lipid-binding preferences of ROCK pleckstrin homology domains. ROCK II bound phosphatidylinositol 3,4,5P3 and was sensitive to its levels, properties not shared by ROCK I. Therefore, endogenous ROCKs are distinctly regulated and in turn are involved with different myosin compartments.
Archives of Pathology & Laboratory Medicine | 2002
Jenny L. Boyle; Helen M. Haupt; Jere B. Stern; Hinke A.B. Multhaupt
CONTEXT Pathologists may encounter problems in the differential diagnosis of malignant melanoma, spindle and epithelioid neoplasms of peripheral nerves, and fibrohistiocytic tumors. Tyrosinase has been demonstrated to be a sensitive marker for melanoma. OBJECTIVE To determine the specificity of tyrosinase expression in the differential diagnosis of melanoma, desmoplastic melanoma, and peripheral nerve sheath tumors. DESIGN Immunoreactivity for tyrosinase, HMB-45 (anti-gp100 protein), S100 protein, CD34, and vimentin was studied in 70 tumors, including 15 melanomas (5 desmoplastic, 4 amelanotic, 6 melanotic), 13 malignant peripheral nerve sheath tumors; 10 schwannomas (1 pigmented), 12 neurofibromas (4 pigmented), and 20 fibrohistiocytic tumors (10 dermatofibrosarcoma protuberans and 10 dermatofibromas). Microwave-based antigen retrieval was performed in 10mM citrate buffer, pH 6.0, for 20 minutes at 121 degrees C. RESULTS All melanomas demonstrated positive immunostaining for tyrosinase, HMB-45, and S100 protein. Immunoreactivity for HMB-45 was generally stronger than that for tyrosinase in amelanotic lesions and significantly stronger in 1 of the desmoplastic lesions. The 4 pigmented neurofibromas were focally positive for tyrosinase, but did not stain for HMB-45. The pigmented schwannoma was focally positive for both tyrosinase and HMB-45. The malignant peripheral nerve sheath tumors, dermatofibrosarcoma protuberans, and dermatofibromas were nonreactive for tyrosinase and HMB-45. CONCLUSIONS Our results support the sensitivity of tyrosinase expression and demonstrate the relative specificity of tyrosinase as a marker for melanocytic lesions, including desmoplastic melanoma, although pigmented peripheral nerve tumors may demonstrate focal positive staining. Immunoreactivity for tyrosinase and HMB-45 may have been enhanced by the microwave-based antigen-retrieval technique used in this study.
The EMBO Journal | 2011
Kim Steen Jensen; Tina Binderup; Klaus T. Jensen; Ib Therkelsen; Rehannah Borup; Elise Nilsson; Hinke A.B. Multhaupt; Caroline Bouchard; Bjørn Quistorff; Andreas Kjær; Göran Landberg; Peter Staller
Exposure of metazoan organisms to hypoxia engages a metabolic switch orchestrated by the hypoxia‐inducible factor 1 (HIF‐1). HIF‐1 mediates induction of glycolysis and active repression of mitochondrial respiration that reduces oxygen consumption and inhibits the production of potentially harmful reactive oxygen species (ROS). Here, we show that FoxO3A is activated in hypoxia downstream of HIF‐1 and mediates the hypoxic repression of a set of nuclear‐encoded mitochondrial genes. FoxO3A is required for hypoxic suppression of mitochondrial mass, oxygen consumption, and ROS production and promotes cell survival in hypoxia. FoxO3A is recruited to the promoters of nuclear‐encoded mitochondrial genes where it directly antagonizes c‐Myc function via a mechanism that does not require binding to the consensus FoxO recognition element. Furthermore, we show that FoxO3A is activated in human hypoxic tumour tissue in vivo and that FoxO3A short‐hairpin RNA (shRNA)‐expressing xenograft tumours are decreased in size and metabolically changed. Our findings define a novel mechanism by which FoxO3A promotes metabolic adaptation and stress resistance in hypoxia.
Journal of Histochemistry and Cytochemistry | 2011
Maria Elisabeth Lendorf; Tina Manon‐Jensen; Pauliina Kronqvist; Hinke A.B. Multhaupt; John R. Couchman
Syndecan proteoglycans may be key regulators of tumor invasion and metastasis because this four-member family of transmembrane receptors regulates cell adhesion, proliferation, and differentiation. Their expression can also serve as prognostic markers. In breast carcinomas, syndecan-1 overexpression correlates with poor prognosis and aggressive phenotype. Syndecan-4 is expressed in most breast carcinoma cell lines, but its role in malignancy is unclear. A possible relationship between syndecan-1 and syndecan-4 expression and established prognostic factors in breast carcinomas was examined. Duplicate samples of 114 benign and malignant breast disease cases were stained for the two syndecans. Clinicopathological information was available for all cases. Syndecan-1 was detected in 72.8% of cases, with significant association between its expression and histological tumor type (p<0.05) and high grade tumors (p<0.05). Syndecan-4 was expressed in 66.7% of cases; expression correlated significantly with positive estrogen (p<0.01) and progesterone (p<0.01) receptor status. Independent expression of the two syndecans was noted from an analysis of single and double positive cases. There was a statistical relationship between syndecan-1 presence in high-grade tumors and absence of syndecan-4, whereas syndecan-4 presence in cases positive for estrogen and progesterone receptor associated with syndecan-1 absence. These syndecans may, therefore, have distinct roles in regulating breast carcinoma cell behavior.
Journal of Biological Chemistry | 2010
Athanassios Dovas; Youngsil Choi; Atsuko Yoneda; Hinke A.B. Multhaupt; Seung-Hae Kwon; Dongmin Kang; Eok-Soo Oh; John R. Couchman
Conventional protein kinase C (PKC) isoforms are essential serine/threonine kinases regulating many signaling networks. At cell adhesion sites, PKCα can impact the actin cytoskeleton through its influence on RhoGTPases, but the intermediate steps are not well known. One important regulator of RhoGTPase function is the multifunctional guanine nucleotide dissociation inhibitor RhoGDIα that sequesters several related RhoGTPases in an inactive form, but it may also target them through interactions with actin-associated proteins. Here, it is demonstrated that conventional PKC phosphorylates RhoGDIα on serine 34, resulting in a specific decrease in affinity for RhoA but not Rac1 or Cdc42. The mechanism of RhoGDIα phosphorylation is distinct, requiring the kinase and phosphatidylinositol 4,5-bisphosphate, consistent with recent evidence that the inositide can activate, localize, and orient PKCα in membranes. Phosphospecific antibodies reveal endogenous phosphorylation in several cell types that is sensitive to adhesion events triggered, for example, by hepatocyte growth factor. Phosphorylation is also sensitive to PKC inhibition. Together with fluorescence resonance energy transfer microscopy sensing GTP-RhoA levels, the data reveal a common pathway in cell adhesion linking two essential mediators, conventional PKC and RhoA.
Biochimica et Biophysica Acta | 2015
Achilleas D. Theocharis; Spyros S. Skandalis; Thomas Neill; Hinke A.B. Multhaupt; Mario Hubo; Helena Frey; Sandeep Gopal; Angélica Maciel Gomes; Nikos Afratis; Hooi Ching Lim; John R. Couchman; Jorge Filmus; Ralph D. Sanderson; Liliana Schaefer; Renato V. Iozzo; Nikos K. Karamanos
Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer.
Journal of Biological Chemistry | 2010
Sandeep Gopal; Adam Bober; James R. Whiteford; Hinke A.B. Multhaupt; Atsuko Yoneda; John R. Couchman
Fibroblasts null for the transmembrane proteoglycan, syndecan-4, have an altered actin cytoskeleton, compared with matching wild-type cells. They do not organize α-smooth muscle actin into bundles, but will do so when full-length syndecan-4 is re-expressed. This requires the central V region of the core protein cytoplasmic domain, though not interactions with PDZ proteins. A second key requirement is multiple heparan sulfate chains. Mutant syndecan-4 with no chains, or only one chain, failed to restore the wild-type phenotype, whereas those expressing two or three were competent. However, clustering of one-chain syndecan-4 forms with antibodies overcame the block, indicating that valency of interactions with ligands is a key component of syndecan-4 function. Measurements of focal contact/adhesion size and focal adhesion kinase phosphorylation correlated with syndecan-4 status and α-smooth muscle actin organization, being reduced where syndecan-4 function was compromised by a lack of multiple heparan sulfate chains.
FEBS Journal | 2013
Tina Manon‐Jensen; Hinke A.B. Multhaupt; John R. Couchman
Syndecans are transmembrane heparan sulfate proteoglycans with roles in cell proliferation, differentiation, adhesion, and migration. They have been associated with multiple functions in tumour progression, through their ability to interact with a wide range of ligands as well as other receptors, which makes them key effectors in the pericellular microenvironment. Extracellular shedding of syndecans by tumour‐associated matrix metalloproteinases (MMPs) may have an important role in tumour progression. Such ectodomain shedding generates soluble ectodomains that may function as paracrine or autocrine effectors, or as competitive inhibitors of the intact proteoglycan. Tumour‐associated MMPs are shown here to cleave the ectodomains of human syndecan‐1 and syndecan‐4. Two membrane proximal regions of both syndecan‐1 and syndecan‐4 are favoured MMP cleavage sites, six and 15 residues from the transmembrane domain. Other sites are 35–40 residues C‐terminal from the heparan sulfate chain substitution sites in both syndecans. The MT1‐MMP cleavage sites in syndecan‐1 and syndecan‐4 were confirmed by site‐directed mutagenesis. These findings provide insights into the characteristics of syndecan shedding.
Science | 2013
M. E. Pedersen; Goda Snieckute; Konstantinos Kagias; Camilla Nehammer; Hinke A.B. Multhaupt; John R. Couchman; Roger Pocock
Extracellular Regulation During Caenorhabditis elegans development, the hermaphrodite-specific neurons (HSNs) migrate and then extend axons toward their functional targets. Posttranslational modification of heparan sulfate proteoglycans are important for HSN development, and so Pedersen et al. (p. 1404) tested the effect of disrupting or reducing chondroitin and heparan sulfate synthesis during C. elegans development. The results suggest that proteoglycan biosynthesis is tightly regulated by a microRNA pathway to shape the cell surface glycosylation architecture required to direct neuronal migration. A conserved microRNA affects the characteristics of extracellular proteoglycans that direct migrating neurons in nematodes. An appropriate balance in glycosylation of proteoglycans is crucial for their ability to regulate animal development. Here, we report that the Caenorhabditis elegans microRNA mir-79, an ortholog of mammalian miR-9, controls sugar-chain homeostasis by targeting two proteins in the proteoglycan biosynthetic pathway: a chondroitin synthase (SQV-5; squashed vulva-5) and a uridine 5′-diphosphate–sugar transporter (SQV-7). Loss of mir-79 causes neurodevelopmental defects through SQV-5 and SQV-7 dysregulation in the epidermis. This results in a partial shutdown of heparan sulfate biosynthesis that impinges on a LON-2/glypican pathway and disrupts neuronal migration. Our results identify a regulatory axis controlled by a conserved microRNA that maintains proteoglycan homeostasis in cells.
Advanced Drug Delivery Reviews | 2016
Hinke A.B. Multhaupt; Birgit Leitinger; Donald Gullberg; John R. Couchman
Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromolecules are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin, or basement membrane glycoproteins, but also in terms of matrix rigidity. This can regulate the release and subsequent biological activity of matrix-bound growth factors, for example, transforming growth factor-β. In the environment of tumors, there may be changes in cell populations and their receptor profiles as well as matrix constitution and protein cross-linking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression.