Hinrich Boeger
University of California, Santa Cruz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hinrich Boeger.
Molecular Cell | 2003
Hinrich Boeger; Joachim Griesenbeck; J. Seth Strattan; Roger D. Kornberg
It has long been known that promoter DNA is converted to a nuclease-sensitive state upon transcriptional activation. Recent findings have raised the possibility that this conversion reflects only a partial unfolding or other perturbation of nucleosomal structure, rather than the loss of nucleosomes. We report topological, sedimentation, nuclease digestion, and ChIP analyses, which demonstrate the complete unfolding of nucleosomes at the transcriptionally active PHO5 promoter of the yeast Saccharomyces cerevisiae. Although nucleosome loss occurs at all promoter sites, it is not complete at any of them, suggesting the existence of an equilibrium between the removal of nucleosomes and their reformation.
FEBS Letters | 2005
Hinrich Boeger; David A. Bushnell; Ralph E. Davis; Joachim Griesenbeck; Yahli Lorch; J. Seth Strattan; Kenneth D. Westover; Roger D. Kornberg
An RNA polymerase II promoter has been isolated in transcriptionally activated and repressed states. Topological and nuclease digestion analyses have revealed a dynamic equilibrium between nucleosome removal and reassembly upon transcriptional activation, and have further shown that nucleosomes are removed by eviction of histone octamers rather than by sliding. The promoter, once exposed, assembles with RNA polymerase II, general transcription factors, and Mediator in a ∼3 MDa transcription initiation complex. X‐ray crystallography has revealed the structure of RNA polymerase II, in the act of transcription, at atomic resolution. Extension of this analysis has shown how nucleotides undergo selection, polymerization, and eventual release from the transcribing complex. X‐ray and electron crystallography have led to a picture of the entire transcription initiation complex, elucidating the mechanisms of promoter recognition, DNA unwinding, abortive initiation, and promoter escape.
Cell | 2008
Hinrich Boeger; Joachim Griesenbeck; Roger D. Kornberg
The rate-limiting step of transcriptional activation in eukaryotes, and thus the critical point for gene regulation, is unknown. Combining biochemical analyses of the chromatin transition at the transcriptionally induced PHO5 promoter in yeast with modeling based on a small number of simple assumptions, we demonstrate that random removal and reformation of promoter nucleosomes can account for stochastic and kinetic properties of PHO5 expression. Our analysis suggests that the disassembly of promoter nucleosomes is rate limiting for PHO5 expression, and supports a model for the underlying mechanism of promoter chromatin remodeling, which appears to conserve a single nucleosome on the promoter at all times.
PLOS Biology | 2013
Christopher R. Brown; Changhui Mao; Elena Falkovskaia; Melissa S. Jurica; Hinrich Boeger
Electron microscopy of single gene molecules and mathematical modeling shows that a promoter stochastically transitions between transcriptionally favorable and unfavorable nucleosome configurations, providing a mechanism for transcriptional bursting.
Molecular and Cellular Biology | 2003
Joachim Griesenbeck; Hinrich Boeger; J. Seth Strattan; Roger D. Kornberg
ABSTRACT Single-copy gene and promoter regions have been excised from yeast chromosomes and have been purified as chromatin by conventional and affinity methods. Promoter regions isolated in transcriptionally repressed and activated states maintain their characteristic chromatin structures. Gel filtration analysis establishes the uniformity of the transcriptionally activated state. Activator proteins interact in the manner anticipated from previous studies in vivo. This work opens the way to the direct study of specific gene regions of eukaryotic chromosomes in diverse functional and structural states.
Nature Structural & Molecular Biology | 2011
Yahli Lorch; Joachim Griesenbeck; Hinrich Boeger; Barbara Maier-Davis; Roger D. Kornberg
Purified chromatin rings, excised from the PHO5 locus of Saccharomyces cerevisiae in transcriptionally repressed and activated states, were remodeled with RSC and ATP. Nucleosomes were translocated, and those originating on the promoter of repressed rings were removed, whereas those originating on the open reading frame (ORF) were retained. Treatment of the repressed rings with histone deacetylase diminished the removal of promoter nucleosomes. These findings point to a principle of promoter chromatin remodeling for transcription, namely that promoter specificity resides primarily in the nucleosomes rather than in the remodeling complex that acts upon them.
Molecular Systems Biology | 2010
Changhui Mao; Christopher R. Brown; Elena Falkovskaia; Shawfeng Dong; Eva Hrabeta-Robinson; Lauren Wenger; Hinrich Boeger
Gene transcription requires a sequence of promoter state transitions, including chromatin remodeling, assembly of the transcription machinery, and clearance of the promoter by RNA polymerase. The rate‐limiting steps in this sequence are regulated by transcriptional activators that bind at specific promoter elements. As the transition kinetics of individual promoters cannot be observed, the identity of the activator‐controlled steps has remained a matter of speculation. In this study, we investigated promoter chromatin structure, and the intrinsic noise of expression over a wide range of expression values for the PHO5 gene of yeast. Interpretation of our results with regard to a stochastic model of promoter chromatin remodeling and gene expression suggests that the regulatory architecture of the gene expression process is measurably reflected in its intrinsic noise profile. Our chromatin structure and noise analyses indicate that the activator of PHO5 transcription stimulates the rates of promoter nucleosome disassembly, and assembly of the transcription machinery after nucleosome removal, but no other rates of the expression process.
Genes & Development | 2015
Jia Fei; Sharon E. Torigoe; Christopher R. Brown; Mai T. Khuong; George A. Kassavetis; Hinrich Boeger; James T. Kadonaga
Chromatin comprises nucleosomes as well as nonnucleosomal histone-DNA particles. Prenucleosomes are rapidly formed histone-DNA particles that can be converted into canonical nucleosomes by a motor protein such as ACF. Here we show that the prenucleosome is a stable conformational isomer of the nucleosome. It consists of a histone octamer associated with ∼ 80 base pair (bp) of DNA, which is located at a position that corresponds to the central 80 bp of a nucleosome core particle. Monomeric prenucleosomes with free flanking DNA do not spontaneously fold into nucleosomes but can be converted into canonical nucleosomes by an ATP-driven motor protein such as ACF or Chd1. In addition, histone H3K56, which is located at the DNA entry and exit points of a canonical nucleosome, is specifically acetylated by p300 in prenucleosomes relative to nucleosomes. Prenucleosomes assembled in vitro exhibit properties that are strikingly similar to those of nonnucleosomal histone-DNA particles in the upstream region of active promoters in vivo. These findings suggest that the prenucleosome, the only known stable conformational isomer of the nucleosome, is related to nonnucleosomal histone-DNA species in the cell.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Christopher R. Brown; Hinrich Boeger
Significance Transcription is affected, in part, by the spooling of promoter DNA in nucleosomes. EM analysis of single PHO5 gene molecules from budding yeast revealed a surprising degree of variation in the promoter nucleosome configuration between individual molecules. This variation could be explained on the theory of random transitioning between alternative configurations, suggesting that genes flicker between transcriptionally conducive and unconducive states. What is the origin of this random behavior? Here, we show that the nucleosomal promoter variation cannot be reduced to molecular variation in the gene’s intracellular surroundings, that is, it is intrinsically stochastic and thus, a cause of stochastic transcription rather than its consequence). Gene product molecule numbers fluctuate over time and between cells, confounding deterministic expectations. The molecular origins of this noise of gene expression remain unknown. Recent EM analysis of single PHO5 gene molecules of yeast indicated that promoter molecules stochastically assume alternative nucleosome configurations at steady state, including the fully nucleosomal and nucleosome-free configuration. Given that distinct configurations are unequally conducive to transcription, the nucleosomal variation of promoter molecules may constitute a source of gene expression noise. This notion, however, implies an untested conjecture, namely that the nucleosomal variation arises de novo or intrinsically (i.e., that it cannot be explained as the result of the promoter’s deterministic response to variation in its molecular surroundings). Here, we show—by microscopically analyzing the nucleosome configurations of two juxtaposed physically linked PHO5 promoter copies—that the configurational variation, indeed, is intrinsically stochastic and thus, a cause of gene expression noise rather than its effect.
PLOS ONE | 2011
Changhui Mao; Christopher R. Brown; Joachim Griesenbeck; Hinrich Boeger
Nucleosomes are believed to inhibit DNA binding by transcription factors. Theoretical attempts to understand the significance of nucleosomes in gene expression and regulation are based upon this assumption. However, nucleosomal inhibition of transcription factor binding to DNA is not complete. Rather, access to nucleosomal DNA depends on a number of factors, including the stereochemistry of transcription factor-DNA interaction, the in vivo kinetics of thermal fluctuations in nucleosome structure, and the intracellular concentration of the transcription factor. In vitro binding studies must therefore be complemented with in vivo measurements. The inducible PHO5 promoter of yeast has played a prominent role in this discussion. It bears two binding sites for the transcriptional activator Pho4, which at the repressed promoter are positioned within a nucleosome and in the linker region between two nucleosomes, respectively. Earlier studies suggested that the nucleosomal binding site is inaccessible to Pho4 binding in the absence of chromatin remodeling. However, this notion has been challenged by several recent reports. We therefore have reanalyzed transcription factor binding to the PHO5 promoter in vivo, using ‘chromatin endogenous cleavage’ (ChEC). Our results unambiguously demonstrate that nucleosomes effectively interfere with the binding of Pho4 and other critical transcription factors to regulatory sequences of the PHO5 promoter. Our data furthermore suggest that Pho4 recruits the TATA box binding protein to the PHO5 promoter.