Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiraku Oshima is active.

Publication


Featured researches published by Hiraku Oshima.


Journal of Chemical Physics | 2010

Effects of side-chain packing on the formation of secondary structures in protein folding.

Satoshi Yasuda; Takashi Yoshidome; Hiraku Oshima; Ryota Kodama; Yuichi Harano; Masahiro Kinoshita

We have recently shown that protein folding is driven by the water-entropy gain. When the alpha-helix or beta-sheet is formed, the excluded volumes generated by the backbone and side chains overlap, leading to an increase in the total volume available to the translational displacement of water molecules. Primarily by this effect, the water entropy becomes higher. At the same time, the dehydration penalty (i.e., the break of hydrogen bonds with water molecules) is compensated by the formation of intramolecular hydrogen bonds. Hence, these secondary structures are very advantageous units, which are to be formed as much as possible in protein folding. The packing of side chains, which leads to a large increase in the water entropy, is also crucially important. Here we investigate the roles of the side-chain packing in the second structural preference in protein folding. For some proteins we calculate the hydration entropies of a number of structures including the native structure with or without side chains. A hybrid of the angle-dependent integral equation theory combined with the multipolar water model and the morphometric approach is employed in the calculation. Our major findings are as follows. For the structures without side chains, there is an apparent tendency that the water entropy becomes higher as the alpha-helix or beta-sheet content increases. For the structures with side chains, however, a higher content of alpha-helices or beta-sheets does not necessarily lead to larger entropy of water due to the effect of the side-chain packing. The thorough, overall packing of side chains, which gives little space in the interior, is unique to the native structure. To accomplish such specific packing, the alpha-helix and beta-sheet contents are prudently adjusted in protein folding.


Journal of Chemical Physics | 2009

A theoretical analysis on characteristics of protein structures induced by cold denaturation

Hiraku Oshima; Takashi Yoshidome; Ken-ichi Amano; Masahiro Kinoshita

Yeast frataxin is a protein exhibiting cold denaturation at an exceptionally high temperature (280 K). We show that the microscopic mechanism of cold denaturation, which has recently been suggested by us [Yoshidome and Kinoshita, Phys. Rev. E 79, 030905(R) (2009)], is also applicable to yeast frataxin. The hybrid of the angle-dependent integral equation theory combined with the multipolar water model and the morphometric approach is employed for calculating hydration thermodynamic quantities of the protein with a prescribed structure. In order to investigate the characteristics of the cold-denatured structures of yeast frataxin, we consider the entropy change upon denaturation comprising the loss of the water entropy and the gain in the protein conformational entropy. The minimum and maximum values of the conformational-entropy gain (i.e., the range within which the exact value lies) are estimated via two routes. The range of the water-entropy loss is then determined from the entropy change experimentally obtained [Pastore et al., J. Am. Chem. Soc. 129, 5374 (2007)]. We calculate the water-entropy loss upon the transition from the native structure to a variety of unfolded structures. We then select the unfolded structures for which the water-entropy loss falls within the determined range. The selection is performed at cold and heat denaturation temperatures of yeast frataxin. The structures characterizing cold and heat denaturations are thus obtained. It is found that the average values of the radius of gyration, excluded volume, and water-accessible surface area for the cold-denatured structures are almost the same as those for the heat-denatured ones. We theoretically estimate the cold denaturation temperature of yeast frataxin from the experimental data for the enthalpy, entropy, and heat-capacity changes upon denaturation. The finding is that the temperature is considerably higher than 273 K. These results are in qualitatively good accord with the experimental observations.


Journal of Chemical Physics | 2015

Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water

Hiraku Oshima; Masahiro Kinoshita

In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient values, however, the many-body correlation plays significant roles in the β-sheet formation and argument of relative stabilities of very similar structures of a protein. These results are argued in detail with respect to the four physically insightful constituents and the two factors mentioned above. The relevance to the absence or presence of hydrogen-bonding properties in the solvent is also discussed in detail.


Nucleic Acids Research | 2014

Binding of an RNA aptamer and a partial peptide of a prion protein: crucial importance of water entropy in molecular recognition

Tomohiko Hayashi; Hiraku Oshima; Tsukasa Mashima; Takashi Nagata; Masato Katahira; Masahiro Kinoshita

It is a central issue to elucidate the new type of molecular recognition accompanied by a global structural change of a molecule upon binding to its targets. Here we investigate the driving force for the binding of R12 (a ribonucleic acid aptamer) and P16 (a partial peptide of a prion protein) during which P16 exhibits the global structural change. We calculate changes in thermodynamic quantities upon the R12–P16 binding using a statistical-mechanical approach combined with molecular models for water which is currently best suited to studies on hydration of biomolecules. The binding is driven by a water-entropy gain originating primarily from an increase in the total volume available to the translational displacement of water molecules in the system. The energy decrease due to the gain of R12–P16 attractive (van der Waals and electrostatic) interactions is almost canceled out by the energy increase related to the loss of R12–water and P16–water attractive interactions. We can explain the general experimental result that stacking of flat moieties, hydrogen bonding and molecular-shape and electrostatic complementarities are frequently observed in the complexes. It is argued that the water-entropy gain is largely influenced by the geometric characteristics (overall shapes, sizes and detailed polyatomic structures) of the biomolecules.


Proteins | 2011

Free-energy function for discriminating the native fold of a protein from misfolded decoys

Satoshi Yasuda; Takashi Yoshidome; Yuichi Harano; Roland Roth; Hiraku Oshima; Koji Oda; Yuji Sugita; Mitsunori Ikeguchi; Masahiro Kinoshita

In this study, free‐energy function (FEF) for discriminating the native fold of a protein from misfolded decoys was investigated. It is a physics‐based function using an all‐atom model, which comprises the hydration entropy (HE) and the total dehydration penalty (TDP). The HE is calculated using a hybrid of a statistical–mechanical theory applied to a molecular model for water and the morphometric approach. The energetic component is suitably taken into account in a simple manner as the TDP. On the basis of the results from a careful test of the FEF, which have been performed for 118 proteins in representative decoy sets, we show that its performance is distinctly superior to that of any other function. The FEF varies largely from model to model for the candidate models for the native structure (NS) obtained from nuclear magnetic resonance experiments, but we can find models or a model for which the FEF becomes lower than for any of the decoy structures. A decoy set is not suited to the test of a free‐energy or potential function in cases where a protein isolated from a protein complex is considered and the structure in the complex is used as the model NS of the isolated protein without any change or where portions of the terminus sides of a protein are removed and the percentage of the secondary structures lost due to the removal is significantly high. As these findings are made possible, we can assume that our FEF precisely captures the features of the true NS. Proteins 2011;


Journal of Chemical Physics | 2012

Structural stability of proteins in aqueous and nonpolar environments

Satoshi Yasuda; Hiraku Oshima; Masahiro Kinoshita

A protein folds into its native structure with the α-helix and∕or β-sheet in aqueous solution under the physiological condition. The relative content of these secondary structures largely varies from protein to protein. However, such structural variability is not exhibited in nonaqueous environment. For example, there is a strong trend that alcohol induces a protein to form α-helices, and many of the membrane proteins within the lipid bilayer consists of α-helices. Here we investigate the structural stability of proteins in aqueous and nonpolar environments using our recently developed free-energy function F = (Λ - TS)∕(k(B)T(0)) = Λ∕(k(B)T(0)) - S∕k(B) (T(0) = 298 K and the absolute temperature T is set at T(0)) which is based on statistical thermodynamics. Λ∕(k(B)T(0)) and S∕k(B) are the energetic and entropic components, respectively, and k(B) is Boltzmanns constant. A smaller value of the positive quantity, -S, represents higher efficiency of the backbone and side-chain packing promoted by the entropic effect arising from the translational displacement of solvent molecules or the CH(2), CH(3), and CH groups which constitute nonpolar chains of lipid molecules. As for Λ, in aqueous solution, a transition to a more compact structure of a protein accompanies the break of protein-solvent hydrogen bonds: As the number of donors and acceptors buried without protein intramolecular hydrogen bonding increases, Λ becomes higher. In nonpolar solvent, lower Λ simply implies more intramolecular hydrogen bonds formed. We find the following. The α-helix and β-sheet are advantageous with respect to -S as well as Λ and to be formed as much as possible. In aqueous solution, the solvent-entropy effect on the structural stability is so strong that the close packing of side chains is dominantly important, and the α-helix and β-sheet contents are judiciously adjusted to accomplish it. In nonpolar solvent, the solvent-entropy effect is substantially weaker than in aqueous solution. Λ is crucial and the α-helix is more stable than the β-sheet in terms of Λ, which develops a tendency that α-helices are exclusively chosen. For a membrane protein, α-helices are stabilized as fundamental structural units for the same reason, but their arrangement is performed through the entropic effect mentioned above.


Journal of Chemical Physics | 2013

Effects of sugars on the thermal stability of a protein

Hiraku Oshima; Masahiro Kinoshita

It is experimentally known that the heat-denaturation temperature of a protein is raised (i.e., its thermal stability is enhanced) by sugar addition. In earlier works, we proposed a physical picture of thermal denaturation of proteins in which the measure of the thermal stability is defined as the solvent-entropy gain upon protein folding at 298 K normalized by the number of residues. A multipolar-model water was adopted as the solvent. The polyatomic structures of the folded and unfolded states of a protein were taken into account in the atomic detail. A larger value of the measure implies higher thermal stability. First, we show that the measure remains effective even when the model water is replaced by the hard-sphere solvent whose number density and molecular diameter are set at those of real water. The physical picture is then adapted to the elucidation of the effects of sugar addition on the thermal stability of a protein. The water-sugar solution is modeled as a binary mixture of hard spheres. The thermal stability is determined by a complex interplay of the diameter of sugar molecules dC and the total packing fraction of the solution η: dC is estimated from the volume per molecule in the sugar crystal and η is calculated using the experimental data of the solution density. We find that the protein is more stabilized as the sucrose or glucose concentration becomes higher and the stabilization effect is stronger for sucrose than for glucose. These results are in accord with the experimental observations. Using a radial-symmetric integral equation theory and the morphometric approach, we decompose the change in the measure upon sugar addition into two components originating from the protein-solvent pair and protein-solvent many-body correlations, respectively. Each component is further decomposed into the excluded-volume and solvent-accessible-surface terms. These decompositions give physical insights into the microscopic origin of the thermal-stability enhancement by sugar addition. As an example, the higher stability of the native state relative to that of the unfolded state is found to be attributable primarily to an increase in the solvent crowding caused by sugar addition. Due to the hydrophilicity of sugar molecules, the addition of sugar by a larger amount or that with a larger molecular size leads to an increase in η which is large enough to make the solvent crowding more serious.


Journal of Chemical Physics | 2011

Potential of mean force between a large solute and a biomolecular complex: A model analysis on protein flux through chaperonin system

Ken-ich Amano; Hiraku Oshima; Masahiro Kinoshita

Insertion of a large solute into an even larger vessel comprising biopolymers followed by release of the same solute from it is one of the important functions sustaining life. As a typical example, an unfolded protein is inserted into a chaperonin from bulk aqueous solution, a cochaperonin acting as a lid is attached to the chaperonin rim and the protein folds into its native structure within the closed cavity, the cochaperonin is detached after the folding is finished, and the folded protein is released back to the bulk solution. On the basis of the experimental observations manifesting that the basic aspects of the protein flux through the chaperonin system is independent of the chaperonin, cochaperonin, and protein species, we adopt a simple model system with which we can cover the whole cycle of the protein flux. We calculate the spatial distribution of the solvent-mediated potential of mean force (PMF) between a spherical solute and a cylindrical vessel or vessel/lid complex. The calculation is performed using the three-dimensional integral equation theory, and the PMF is decomposed into energetic and entropic components. We argue that an unfolded protein with a larger excluded volume (EV) and weak hydrophobicity is entropically inserted into the chaperonin cavity and constrained within a small space almost in its center. The switch from insertion to release is achieved by decreasing the EV and turning the protein surface hydrophilic in the folding process. For this release, in which the energetic component is a requisite, the feature that the chaperonin inner surface in the absence of the cochaperonin is not hydrophilic plays essential roles. On the other hand, the inner surface of the chaperonin/cochaperonin complex is hydrophilic, and the protein is energetically repelled from it: The protein remains constrained within the small space mentioned above without contacting the inner surface for correct folding. The structural and inner-surface properties of the chaperonin or complex are controlled by the adenosine triphosphate (ATP) binding to the chaperonin, hydrolysis of ATP into adenosine diphosphate (ADP) and Pi, and dissociation of ADP and Pi. The function of the chaperonin system is exhibited by synchronizing the chemical cycle of ATP hydrolysis with hydration properties of a protein in the water confined on the scale of a nanometer which are substantially different from those in the bulk water.


Journal of Physical Chemistry B | 2015

Mechanism of One-to-Many Molecular Recognition Accompanying Target-Dependent Structure Formation: For the Tumor Suppressor p53 Protein as an Example.

Tomohiko Hayashi; Hiraku Oshima; Satoshi Yasuda; Masahiro Kinoshita

The new type of molecular recognition, in which an intrinsically disordered region (IDR) of a protein binds to many different target proteins with target-dependent structure formation, is indispensable to the expression of life phenomena and also implicated in a number of diseases. According to the prevailing view, the physicochemical factors responsible for the binding are also target dependent. Here we consider an IDR of the tumor suppressor p53 protein, p53CTD, as an important example related to carcinogenesis and analyze its binding to four targets accompanying the formation of target-dependent structures (i.e., helix, sheet, and two different coils) using our statistical-mechanical method combined with molecular models for water. We find that all of the seemingly different binding processes are driven by a large gain of the translational, configurational entropy of water in the system. The gain originates from sufficiently high shape complementarity on the atomic level within the p53CTD-target interface. It is also required that the electrostatic complementarity be ensured as much as possible to compensate for the dehydration. Such complementarities are achieved in harmony with the portion of the target to which p53CTD binds, leading to a large diversity of structures of p53CTD formed upon binding: If they are not achievable, the binding does not occur. This finding is made possible only by calculating the changes in thermodynamic quantities upon binding and decomposing them into physically insightful components.


Journal of Physics: Condensed Matter | 2016

Water based on a molecular model behaves like a hard-sphere solvent for a nonpolar solute when the reference interaction site model and related theories are employed.

Tomohiko Hayashi; Hiraku Oshima; Yuichi Harano; Masahiro Kinoshita

For neutral hard-sphere solutes, we compare the reduced density profile of water around a solute g(r), solvation free energy μ, energy U, and entropy S under the isochoric condition predicted by the two theories: dielectrically consistent reference interaction site model (DRISM) and angle-dependent integral equation (ADIE) theories. A molecular model for water pertinent to each theory is adopted. The hypernetted-chain (HNC) closure is employed in the ADIE theory, and the HNC and Kovalenko-Hirata (K-H) closures are tested in the DRISM theory. We also calculate g(r), U, S, and μ of the same solute in a hard-sphere solvent whose molecular diameter and number density are set at those of water, in which case the radial-symmetric integral equation (RSIE) theory is employed. The dependences of μ, U, and S on the excluded volume and solvent-accessible surface area are analyzed using the morphometric approach (MA). The results from the ADIE theory are in by far better agreement with those from computer simulations available for g(r), U, and μ. For the DRISM theory, g(r) in the vicinity of the solute is quite high and becomes progressively higher as the solute diameter d U increases. By contrast, for the ADIE theory, it is much lower and becomes further lower as d U increases. Due to unphysically positive U and significantly larger |S|, μ from the DRISM theory becomes too high. It is interesting that μ, U, and S from the K-H closure are worse than those from the HNC closure. Overall, the results from the DRISM theory with a molecular model for water are quite similar to those from the RSIE theory with the hard-sphere solvent. Based on the results of the MA analysis, we comparatively discuss the different theoretical methods for cases where they are applied to studies on the solvation of a protein.

Collaboration


Dive into the Hiraku Oshima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge