Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiram Clawson is active.

Publication


Featured researches published by Hiram Clawson.


Nucleic Acids Research | 2006

The UCSC genome browser database: update 2007

Robert M. Kuhn; Donna Karolchik; Ann S. Zweig; Heather Trumbower; Daryl J. Thomas; Archana Thakkapallayil; Charles W. Sugnet; Mario Stanke; Kayla E. Smith; Adam Siepel; Kate R. Rosenbloom; Brooke Rhead; Brian J. Raney; Andrew A. Pohl; Jakob Skou Pedersen; Fan Hsu; Angie S. Hinrichs; Rachel A. Harte; Mark Diekhans; Hiram Clawson; Gill Bejerano; Galt P. Barber; Robert Baertsch; David Haussler; William Kent

The UCSC Genome Browser Database (GBD, http://genome.ucsc.edu) is a publicly available collection of genome assembly sequence data and integrated annotations for a large number of organisms, including extensive comparative-genomic resources. In the past year, 13 new genome assemblies have been added, including two important primate species, orangutan and marmoset, bringing the total to 46 assemblies for 24 different vertebrates and 39 assemblies for 22 different invertebrate animals. The GBD datasets may be viewed graphically with the UCSC Genome Browser, which uses a coordinate-based display system allowing users to juxtapose a wide variety of data. These data include all mRNAs from GenBank mapped to all organisms, RefSeq alignments, gene predictions, regulatory elements, gene expression data, repeats, SNPs and other variation data, as well as pairwise and multiple-genome alignments. A variety of other bioinformatics tools are also provided, including BLAT, the Table Browser, the Gene Sorter, the Proteome Browser, VisiGene and Genome Graphs.


Nucleic Acids Research | 2012

The UCSC Genome Browser database: extensions and updates 2011

Timothy R. Dreszer; Donna Karolchik; Ann S. Zweig; Angie S. Hinrichs; Brian J. Raney; Robert M. Kuhn; Laurence R. Meyer; Matthew C. Wong; Cricket A. Sloan; Kate R. Rosenbloom; Greg Roe; Brooke Rhead; Andy Pohl; Venkat S. Malladi; Chin H. Li; Katrina Learned; Vanessa M. Kirkup; Fan Hsu; Rachel A. Harte; Luvina Guruvadoo; Mary Goldman; Belinda Giardine; Pauline A. Fujita; Mark Diekhans; Melissa S. Cline; Hiram Clawson; Galt P. Barber; David Haussler; W. James Kent

The University of California Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analyzing and sharing both publicly available and user-generated genomic data sets. In the past year, the local database has been updated with four new species assemblies, and we anticipate another four will be released by the end of 2011. Further, a large number of annotation tracks have been either added, updated by contributors, or remapped to the latest human reference genome. Among these are new phenotype and disease annotations, UCSC genes, and a major dbSNP update, which required new visualization methods. Growing beyond the local database, this year we have introduced ‘track data hubs’, which allow the Genome Browser to provide access to remotely located sets of annotations. This feature is designed to significantly extend the number and variety of annotation tracks that are publicly available for visualization and analysis from within our site. We have also introduced several usability features including track search and a context-sensitive menu of options available with a right-click anywhere on the Browsers image.


Nucleic Acids Research | 2007

The UCSC Genome Browser Database: 2008 update

Donna Karolchik; Robert M. Kuhn; Robert Baertsch; Galt P. Barber; Hiram Clawson; Mark Diekhans; Belinda Giardine; Rachel A. Harte; Angie S. Hinrichs; Fan Hsu; K. M. Kober; Webb Miller; Jakob Skou Pedersen; Andy Pohl; Brian J. Raney; Brooke Rhead; Kate R. Rosenbloom; Kayla E. Smith; Mario Stanke; Archana Thakkapallayil; Heather Trumbower; Ting Wang; Ann S. Zweig; David Haussler; William Kent

The University of California, Santa Cruz, Genome Browser Database (GBD) provides integrated sequence and annotation data for a large collection of vertebrate and model organism genomes. Seventeen new assemblies have been added to the database in the past year, for a total coverage of 19 vertebrate and 21 invertebrate species as of September 2007. For each assembly, the GBD contains a collection of annotation data aligned to the genomic sequence. Highlights of this year’s additions include a 28-species human-based vertebrate conservation annotation, an enhanced UCSC Genes set, and more human variation, MGC, and ENCODE data. The database is optimized for fast interactive performance with a set of web-based tools that may be used to view, manipulate, filter and download the annotation data. New toolset features include the Genome Graphs tool for displaying genome-wide data sets, session saving and sharing, better custom track management, expanded Genome Browser configuration options and a Genome Browser wiki site. The downloadable GBD data, the companion Genome Browser toolset and links to documentation and related information can be found at: http://genome.ucsc.edu/. INTRODUCTION Fundamental to expanding our knowledge of how the human body works in health and in disease is the capability to access and share data produced through experimentation and computational analysis. The University of California, Santa Cruz (UCSC) Genome Browser Database (GBD) (http://genome.ucsc.edu) (1) provides a common repository for genomic annotation data—including comparative genomics, genes and gene predictions; mRNA and EST alignments; and expression, regulation, variation and assembly data—and robust, flexible tools for viewing, comparing, distributing and analyzing the information. Produced and maintained by the Genome Bioinformatics Group at the UCSC Center for Biomolecular Science and Engineering, the GBD focuses primarily on vertebrate and model organism genomes, with an emphasis on comparative genomics analysis. As of September 2007 the GBD contains data for 11 mammalian species including human, mouse, rat, chimpanzee, rhesus macaque, horse, cow, cat, dog, opossum and platypus; 8 other vertebrates: chicken, lizard (Anolis carolinensis), frog (Xenopus tropicalis), zebrafish, fugu, tetraodon, medaka and stickleback; and 21 invertebrates including 11 flies, honeybee, Anopheles mosquito, five worms, one yeast (Saccharomyces cerevisiae) and two deuterostomes—purple sea urchin and sea squirt. For many of the organisms, more than one assembly is provided, and several older archived assemblies may be *To whom correspondence should be addressed. Tel: +1 831 459 1544; Fax: +1 831 459 1809; Email: [email protected] University of California, Santa Cruz, Genome Browser Database (GBD) provides integrated sequence and annotation data for a large collection of vertebrate and model organism genomes. Seventeen new assemblies have been added to the database in the past year, for a total coverage of 19 vertebrate and 21 invertebrate species as of September 2007. For each assembly, the GBD contains a collection of annotation data aligned to the genomic sequence. Highlights of this years additions include a 28-species human-based vertebrate conservation annotation, an enhanced UCSC Genes set, and more human variation, MGC, and ENCODE data. The database is optimized for fast interactive performance with a set of web-based tools that may be used to view, manipulate, filter and download the annotation data. New toolset features include the Genome Graphs tool for displaying genome-wide data sets, session saving and sharing, better custom track management, expanded Genome Browser configuration options and a Genome Browser wiki site. The downloadable GBD data, the companion Genome Browser toolset and links to documentation and related information can be found at: http://genome.ucsc.edu/.


Nucleic Acids Research | 2015

The UCSC Genome Browser database: 2015 update

Kate R. Rosenbloom; Joel Armstrong; Galt P. Barber; Jonathan Casper; Hiram Clawson; Mark Diekhans; Timothy R. Dreszer; Pauline A. Fujita; Luvina Guruvadoo; Maximilian Haeussler; Rachel A. Harte; Steven G. Heitner; Glenn Hickey; Angie S. Hinrichs; Robert Hubley; Donna Karolchik; Katrina Learned; Brian T. Lee; Chin H. Li; Karen H. Miga; Ngan Nguyen; Benedict Paten; Brian J. Raney; Arian Smit; Matthew L. Speir; Ann S. Zweig; David Haussler; Robert M. Kuhn; W. James Kent

Launched in 2001 to showcase the draft human genome assembly, the UCSC Genome Browser database (http://genome.ucsc.edu) and associated tools continue to grow, providing a comprehensive resource of genome assemblies and annotations to scientists and students worldwide. Highlights of the past year include the release of a browser for the first new human genome reference assembly in 4 years in December 2013 (GRCh38, UCSC hg38), a watershed comparative genomics annotation (100-species multiple alignment and conservation) and a novel distribution mechanism for the browser (GBiB: Genome Browser in a Box). We created browsers for new species (Chinese hamster, elephant shark, minke whale), ‘mined the web’ for DNA sequences and expanded the browser display with stacked color graphs and region highlighting. As our user community increasingly adopts the UCSC track hub and assembly hub representations for sharing large-scale genomic annotation data sets and genome sequencing projects, our menu of public data hubs has tripled.


Bioinformatics | 2006

The UCSC Known Genes

Fan Hsu; W. James Kent; Hiram Clawson; Robert M. Kuhn; Mark Diekhans; David Haussler

The University of California Santa Cruz (UCSC) Known Genes dataset is constructed by a fully automated process, based on protein data from Swiss-Prot/TrEMBL (UniProt) and the associated mRNA data from Genbank. The detailed steps of this process are described. Extensive cross-references from this dataset to other genomic and proteomic data were constructed. For each known gene, a details page is provided containing rich information about the gene, together with extensive links to other relevant genomic, proteomic and pathway data. As of July 2005, the UCSC Known Genes are available for human, mouse and rat genomes. The Known Genes serves as a foundation to support several key programs: the Genome Browser, Proteome Browser, Gene Sorter and Table Browser offered at the UCSC website. All the associated data files and program source code are also available. They can be accessed at http://genome.ucsc.edu. The genomic coverage of UCSC Known Genes, RefSeq, Ensembl Genes, H-Invitational and CCDS is analyzed. Although UCSC Known Genes offers the highest genomic and CDS coverage among major human and mouse gene sets, more detailed analysis suggests all of them could be further improved.


Nucleic Acids Research | 2016

The UCSC Genome Browser database: 2016 update.

Matthew L. Speir; Ann S. Zweig; Kate R. Rosenbloom; Brian J. Raney; Benedict Paten; Parisa Nejad; Brian T. Lee; Katrina Learned; Donna Karolchik; Angie S. Hinrichs; Steven G. Heitner; Rachel A. Harte; Maximilian Haeussler; Luvina Guruvadoo; Pauline A. Fujita; Christopher Eisenhart; Mark Diekhans; Hiram Clawson; Jonathan Casper; Galt P. Barber; David Haussler; Robert M. Kuhn; W. James Kent

For the past 15 years, the UCSC Genome Browser (http://genome.ucsc.edu/) has served the international research community by offering an integrated platform for viewing and analyzing information from a large database of genome assemblies and their associated annotations. The UCSC Genome Browser has been under continuous development since its inception with new data sets and software features added frequently. Some release highlights of this year include new and updated genome browsers for various assemblies, including bonobo and zebrafish; new gene annotation sets; improvements to track and assembly hub support; and a new interactive tool, the “Data Integrator”, for intersecting data from multiple tracks. We have greatly expanded the data sets available on the most recent human assembly, hg38/GRCh38, to include updated gene prediction sets from GENCODE, more phenotype- and disease-associated variants from ClinVar and ClinGen, more genomic regulatory data, and a new multiple genome alignment.


Nucleic Acids Research | 2011

ENCODE whole-genome data in the UCSC genome browser (2011 update)

Brian J. Raney; Melissa S. Cline; Kate R. Rosenbloom; Timothy R. Dreszer; Katrina Learned; Galt P. Barber; Laurence R. Meyer; Cricket A. Sloan; Venkat S. Malladi; Krishna M. Roskin; Bernard B. Suh; Angie S. Hinrichs; Hiram Clawson; Ann S. Zweig; Vanessa M. Kirkup; Pauline A. Fujita; Brooke Rhead; Kayla E. Smith; Andy Pohl; Robert M. Kuhn; Donna Karolchik; David Haussler; W. James Kent

The ENCODE project is an international consortium with a goal of cataloguing all the functional elements in the human genome. The ENCODE Data Coordination Center (DCC) at the University of California, Santa Cruz serves as the central repository for ENCODE data. In this role, the DCC offers a collection of high-throughput, genome-wide data generated with technologies such as ChIP-Seq, RNA-Seq, DNA digestion and others. This data helps illuminate transcription factor-binding sites, histone marks, chromatin accessibility, DNA methylation, RNA expression, RNA binding and other cell-state indicators. It includes sequences with quality scores, alignments, signals calculated from the alignments, and in most cases, element or peak calls calculated from the signal data. Each data set is available for visualization and download via the UCSC Genome Browser (http://genome.ucsc.edu/). ENCODE data can also be retrieved using a metadata system that captures the experimental parameters of each assay. The ENCODE web portal at UCSC (http://encodeproject.org/) provides information about the ENCODE data and links for access.


Nucleic Acids Research | 2017

The UCSC Genome Browser database: 2017 update

Cath Tyner; Galt P. Barber; Jonathan Casper; Hiram Clawson; Mark Diekhans; Christopher Eisenhart; Clayton M. Fischer; David Gibson; Jairo Navarro Gonzalez; Luvina Guruvadoo; Maximilian Haeussler; Steve Heitner; Angie S. Hinrichs; Donna Karolchik; Brian T. Lee; Christopher M. Lee; Parisa Nejad; Brian J. Raney; Kate R. Rosenbloom; Matthew L. Speir; Chris Villarreal; John Vivian; Ann S. Zweig; David Haussler; Robert M. Kuhn; W. James Kent

Since its 2001 debut, the University of California, Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu/) team has provided continuous support to the international genomics and biomedical communities through a web-based, open source platform designed for the fast, scalable display of sequence alignments and annotations landscaped against a vast collection of quality reference genome assemblies. The browsers publicly accessible databases are the backbone of a rich, integrated bioinformatics tool suite that includes a graphical interface for data queries and downloads, alignment programs, command-line utilities and more. This years highlights include newly designed home and gateway pages; a new ‘multi-region’ track display configuration for exon-only, gene-only and custom regions visualization; new genome browsers for three species (brown kiwi, crab-eating macaque and Malayan flying lemur); eight updated genome assemblies; extended support for new data types such as CRAM, RNA-seq expression data and long-range chromatin interaction pairs; and the unveiling of a new supported mirror site in Japan.


PLOS Computational Biology | 2005

Intronic Alternative Splicing Regulators Identified by Comparative Genomics in Nematodes

Jennifer Lee Kabat; Sergio Barberan-Soler; Paul McKenna; Hiram Clawson; Tracy Farrer; Alan M. Zahler

Many alternative splicing events are regulated by pentameric and hexameric intronic sequences that serve as binding sites for splicing regulatory factors. We hypothesized that intronic elements that regulate alternative splicing are under selective pressure for evolutionary conservation. Using a Wobble Aware Bulk Aligner genomic alignment of Caenorhabditis elegans and Caenorhabditis briggsae, we identified 147 alternatively spliced cassette exons that exhibit short regions of high nucleotide conservation in the introns flanking the alternative exon. In vivo experiments on the alternatively spliced let-2 gene confirm that these conserved regions can be important for alternative splicing regulation. Conserved intronic element sequences were collected into a dataset and the occurrence of each pentamer and hexamer motif was counted. We compared the frequency of pentamers and hexamers in the conserved intronic elements to a dataset of all C. elegans intron sequences in order to identify short intronic motifs that are more likely to be associated with alternative splicing. High-scoring motifs were examined for upstream or downstream preferences in introns surrounding alternative exons. Many of the high- scoring nematode pentamer and hexamer motifs correspond to known mammalian splicing regulatory sequences, such as (T)GCATG, indicating that the mechanism of alternative splicing regulation is well conserved in metazoans. A comparison of the analysis of the conserved intronic elements, and analysis of the entire introns flanking these same exons, reveals that focusing on intronic conservation can increase the sensitivity of detecting putative splicing regulatory motifs. This approach also identified novel sequences whose role in splicing is under investigation and has allowed us to take a step forward in defining a catalog of splicing regulatory elements for an organism. In vivo experiments confirm that one novel high-scoring sequence from our analysis, (T)CTATC, is important for alternative splicing regulation of the unc-52 gene.


Genome Research | 2014

Alignathon: A competitive assessment of whole genome alignment methods

Dent Earl; Ngan Nguyen; Glenn Hickey; Robert S. Harris; Stephen Fitzgerald; Kathryn Beal; Seledtsov I; Molodtsov; Brian J. Raney; Hiram Clawson; Jaebum Kim; Carsten Kemena; Jia-Ming Chang; Ionas Erb; Poliakov A; Minmei Hou; Javier Herrero; William Kent; Solovyev; Aaron E. Darling; Jian Ma; Cedric Notredame; Michael Brudno; Inna Dubchak; David Haussler; Benedict Paten

Multiple sequence alignments (MSAs) are a prerequisite for a wide variety of evolutionary analyses. Published assessments and benchmark data sets for protein and, to a lesser extent, global nucleotide MSAs are available, but less effort has been made to establish benchmarks in the more general problem of whole-genome alignment (WGA). Using the same model as the successful Assemblathon competitions, we organized a competitive evaluation in which teams submitted their alignments and then assessments were performed collectively after all the submissions were received. Three data sets were used: Two were simulated and based on primate and mammalian phylogenies, and one was comprised of 20 real fly genomes. In total, 35 submissions were assessed, submitted by 10 teams using 12 different alignment pipelines. We found agreement between independent simulation-based and statistical assessments, indicating that there are substantial accuracy differences between contemporary alignment tools. We saw considerable differences in the alignment quality of differently annotated regions and found that few tools aligned the duplications analyzed. We found that many tools worked well at shorter evolutionary distances, but fewer performed competitively at longer distances. We provide all data sets, submissions, and assessment programs for further study and provide, as a resource for future benchmarking, a convenient repository of code and data for reproducing the simulation assessments.

Collaboration


Dive into the Hiram Clawson's collaboration.

Top Co-Authors

Avatar

David Haussler

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. James Kent

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian J. Raney

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann S. Zweig

University of California

View shared research outputs
Top Co-Authors

Avatar

Robert M. Kuhn

University of California

View shared research outputs
Top Co-Authors

Avatar

Galt P. Barber

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark Diekhans

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge