Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiro-oki Iwakawa is active.

Publication


Featured researches published by Hiro-oki Iwakawa.


Trends in Cell Biology | 2015

The Functions of MicroRNAs: mRNA Decay and Translational Repression

Hiro-oki Iwakawa; Yukihide Tomari

MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs, which regulate complementary mRNAs by inducing translational repression and mRNA decay. Although this dual repression system seems to operate in both animals and plants, genetic and biochemical studies suggest that the mechanism underlying the miRNA-mediated silencing is different in the two kingdoms. Here, we review the recent progress in our understanding of how miRNAs mediate translational repression and mRNA decay, and discuss the contributions of the two silencing modes to the overall silencing effect in both kingdoms.


Molecular Cell | 2013

Molecular Insights into microRNA-Mediated Translational Repression in Plants

Hiro-oki Iwakawa; Yukihide Tomari

microRNAs (miRNAs) bind Argonaute proteins in order to form RNA-induced silencing complexes (RISCs) that can silence the expression of complementary mRNAs. Plant miRNAs can mediate the cleavage of their target mRNAs as well as the repression of their translation. Here, by using an in vitro system prepared from plant culture cells, we biochemically dissect the mechanisms by which Arabidopsis thaliana ARGONAUTE1 RISC (AtAGO1-RISC) silences its mRNA targets. We find that AtAGO1-RISC has the ability to repress translation initiation without promoting deadenylation or mRNA decay. Strikingly, AtAGO1-RISC bound in the 5 untranslated region or the open reading frame can sterically block the recruitment or movement of ribosomes. These silencing effects require more extensive base pairing to the target site in comparison to typical animal miRNAs. Our data provide mechanistic insights into miRNA-mediated translational repression in plants.


Molecular Cell | 2014

MicroRNAs Block Assembly of eIF4F Translation Initiation Complex in Drosophila

Takashi Fukaya; Hiro-oki Iwakawa; Yukihide Tomari

miRNAs silence their complementary target mRNAs by translational repression as well as by poly(A) shortening and mRNA decay. In Drosophila, miRNAs are typically incorporated into Argonaute1 (Ago1) to form the effector complex called RNA-induced silencing complex (RISC). Ago1-RISC associates with a scaffold protein GW182, which recruits additional silencing factors. We have previously shown that miRNAs repress translation initiation by blocking formation of the 48S and 80S ribosomal complexes. However, it remains unclear how ribosome recruitment is impeded. Here, we examined the assembly of translation initiation factors on the target mRNA under repression. We show that Ago1-RISC induces dissociation of eIF4A, a DEAD-box RNA helicase, from the target mRNA without affecting 5 cap recognition by eIF4E in a manner independent of GW182. In contrast, direct tethering of GW182 promotes dissociation of both eIF4E and eIF4A. We propose that miRNAs act to block the assembly of the eIF4F complex during translation initiation.


Journal of Virology | 2008

A Viral Noncoding RNA Generated by cis-Element-Mediated Protection against 5′→3′ RNA Decay Represses both Cap-Independent and Cap-Dependent Translation

Hiro-oki Iwakawa; Hiroyuki Mizumoto; Hideaki Nagano; Yuka Imoto; Kazuma Takigawa; Siriruk Sarawaneeyaruk; Masanori Kaido; Kazuyuki Mise; Tetsuro Okuno

ABSTRACT Positive-strand RNA viruses use diverse mechanisms to regulate viral and host gene expression for ensuring their efficient proliferation or persistence in the host. We found that a small viral noncoding RNA (0.4 kb), named SR1f, accumulated in Red clover necrotic mosaic virus (RCNMV)-infected plants and protoplasts and was packaged into virions. The genome of RCNMV consists of two positive-strand RNAs, RNA1 and RNA2. SR1f was generated from the 3′ untranslated region (UTR) of RNA1, which contains RNA elements essential for both cap-independent translation and negative-strand RNA synthesis. A 58-nucleotide sequence in the 3′ UTR of RNA1 (Seq1f58) was necessary and sufficient for the generation of SR1f. SR1f was neither a subgenomic RNA nor a defective RNA replicon but a stable degradation product generated by Seq1f58-mediated protection against 5′→3′ decay. SR1f efficiently suppressed both cap-independent and cap-dependent translation both in vitro and in vivo. SR1f trans inhibited negative-strand RNA synthesis of RCNMV genomic RNAs via repression of replicase protein production but not via competition of replicase proteins in vitro. RCNMV seems to use cellular enzymes to generate SR1f that might play a regulatory role in RCNMV infection. Our results also suggest that Seq1f58 is an RNA element that protects the 3′-side RNA sequences against 5′→3′ decay in plant cells as reported for the poly(G) tract and stable stem-loop structure in Saccharomyces cerevisiae.


Journal of Virology | 2006

Cap-independent translation mechanism of red clover necrotic mosaic virus RNA2 differs from that of RNA1 and is linked to RNA replication.

Hiroyuki Mizumoto; Hiro-oki Iwakawa; Masanori Kaido; Kazuyuki Mise; Tetsuro Okuno

ABSTRACT The genome of Red clover necrotic mosaic virus (RCNMV) in the genus Dianthovirus is divided into two RNA molecules of RNA1 and RNA2, which have no cap structure at the 5′ end and no poly(A) tail at the 3′ end. The 3′ untranslated region (3′ UTR) of RCNMV RNA1 contains an essential RNA element (3′TE-DR1), which is required for cap-independent translation. In this study, we investigated a cap-independent translational mechanism of RNA2 using a firefly luciferase (Luc) gene expression assay system in cowpea protoplasts and a cell-free lysate (BYL) prepared from evacuolated tobacco BY2 protoplasts. We were unable to detect cis-acting RNA sequences in RNA2 that can replace the function of a cap structure, such as the 3′TE-DR1 of RNA1. However, the uncapped reporter RNA2, RNA2-Luc, in which the Luc open reading frame (ORF) was inserted between the 5′ UTR and the movement protein ORF, was effectively translated in the presence of p27 and p88 in protoplasts in which RNA2-Luc was replicated. Time course experiments in protoplasts showed that the translational activity of RNA2-Luc did not reflect the amount of RNA2. Mutations in cis-acting RNA replication elements of RNA2 abolished the cap-independent translational activity of RNA2-Luc, suggesting that the translational activity of RNA2-Luc is coupled to RNA replication. Our results show that the translational mechanism differs between two segmented genomic RNAs of RCNMV. We present a model in which only RNA2 that is generated de novo through the viral RNA replication machinery functions as mRNA for translation.


Virology | 2008

cis-Preferential requirement of a 1 frameshift product p88 for the replication of Red clover necrotic mosaic virus RNA1

Kimiyuki Okamoto; Hideaki Nagano; Hiro-oki Iwakawa; Hiroyuki Mizumoto; Atsushi Takeda; Masanori Kaido; Kazuyuki Mise; Tetsuro Okuno

n Abstractn n The genome of Red clover necrotic mosaic virus (RCNMV) consists of RNA1 and RNA2. RNA1 encodes N-terminally overlapping replication proteins, p27 and p88, which are translated in a cap-independent manner. The 3′ untranslated region of RNA1 contains RNA elements essential for cap-independent translation and negative-strand RNA synthesis. In this study, we investigated how p27 and p88 were engaged in the replication of RCNMV genomic RNAs by using DNA vectors or in vitro transcribed RNAs in protoplasts and in a cell-free extract of evacuolated BY-2 protoplasts. Our results show a cis-preferential requirement of p88, but not of p27, for the replication of RNA1. This mechanism might help to facilitate a switch in the role of RNA1 from mRNA to a replication template.n n


Virology | 2011

A long-distance RNA-RNA interaction plays an important role in programmed 1 ribosomal frameshifting in the translation of p88 replicase protein of Red clover necrotic mosaic virus

Yuri Tajima; Hiro-oki Iwakawa; Masanori Kaido; Kazuyuki Mise; Tetsuro Okuno

n Abstractn n Programmed −1 ribosomal frameshifting (−1 PRF) is one viral translation strategy to express overlapping genes in positive-strand RNA viruses. Red clover necrotic mosaic virus (RCNMV) uses this strategy to express its replicase component protein p88. In this study, we used a cell-free translation system to map cis-acting RNA elements required for −1 PRF. Our results show that a small stem-loop structure adjacent to the cap-independent translation element in the 3′ untranslated region (UTR) of RCNMV RNA1 is required for −1 PRF. Site-directed mutagenesis experiments suggested that this stem-loop regulates −1 PRF via base-pairing with complementary sequences in a bulged stem-loop adjacent to the shifty site. The existence of RNA elements responsible for −1 PRF and the cap-independent translation of replicase proteins in the 3′ UTR of RNA1 might be important for switching translation to replication and for regulating the ratio of p88 to p27.n n


Journal of Virology | 2012

Poly(A)-Binding Protein Facilitates Translation of an Uncapped/Nonpolyadenylated Viral RNA by Binding to the 3′ Untranslated Region

Hiro-oki Iwakawa; Yuri Tajima; Takako Taniguchi; Masanori Kaido; Kazuyuki Mise; Yukihide Tomari; Hisaaki Taniguchi; Tetsuro Okuno

ABSTRACT Viruses employ an alternative translation mechanism to exploit cellular resources at the expense of host mRNAs and to allow preferential translation. Plant RNA viruses often lack both a 5′ cap and a 3′ poly(A) tail in their genomic RNAs. Instead, cap-independent translation enhancer elements (CITEs) located in the 3′ untranslated region (UTR) mediate their translation. Although eukaryotic translation initiation factors (eIFs) or ribosomes have been shown to bind to the 3′CITEs, our knowledge is still limited for the mechanism, especially for cellular factors. Here, we searched for cellular factors that stimulate the 3′CITE-mediated translation of Red clover necrotic mosaic virus (RCNMV) RNA1 using RNA aptamer-based one-step affinity chromatography, followed by mass spectrometry analysis. We identified the poly(A)-binding protein (PABP) as one of the key players in the 3′CITE-mediated translation of RCNMV RNA1. We found that PABP binds to an A-rich sequence (ARS) in the viral 3′ UTR. The ARS is conserved among dianthoviruses. Mutagenesis and a tethering assay revealed that the PABP-ARS interaction stimulates 3′CITE-mediated translation of RCNMV RNA1. We also found that both the ARS and 3′CITE are important for the recruitment of the plant eIF4F and eIFiso4F factors to the 3′ UTR and of the 40S ribosomal subunit to the viral mRNA. Our results suggest that dianthoviruses have evolved the ARS and 3′CITE as substitutes for the 3′ poly(A) tail and the 5′ cap of eukaryotic mRNAs for the efficient recruitment of eIFs, PABP, and ribosomes to the uncapped/nonpolyadenylated viral mRNA.


EMBO Reports | 2013

Arabidopsis ARGONAUTE7 selects miR390 through multiple checkpoints during RISC assembly

Yayoi Endo; Hiro-oki Iwakawa; Yukihide Tomari

Plant ARGONAUTE7 (AGO7) assembles RNA‐induced silencing complex (RISC) specifically with miR390 and regulates the auxin‐signalling pathway via production of TAS3 trans‐acting siRNAs (tasiRNAs). However, how AGO7 discerns miR390 among other miRNAs remains unclear. Here, we show that the 5′ adenosine of miR390 and the central region of miR390/miR390* duplex are critical for the specific interaction with AGO7. Furthermore, despite the existence of mismatches in the seed and central regions of the duplex, cleavage of the miR390* strand is required for maturation of AGO7–RISC. These findings suggest that AGO7 uses multiple checkpoints to select miR390, thereby circumventing promiscuous tasiRNA production.


Virology | 2009

Host-dependent roles of the viral 5' untranslated region (UTR) in RNA stabilization and cap-independent translational enhancement mediated by the 3' UTR of Red clover necrotic mosaic virus RNA1

Siriruk Sarawaneeyaruk; Hiro-oki Iwakawa; Hiroyuki Mizumoto; Hiromi Murakami; Masanori Kaido; Kazuyuki Mise; Tetsuro Okuno

The genome of Red clover necrotic mosaic virus (RCNMV) consists of RNA1 and RNA2, both lacking a cap structure and a poly(A)tail. RNA1 has a translational enhancer element (3TE-DR1) in the 3 untranslated region (UTR). In this study, we analyzed the roles of 5 and 3 UTRs of RNA1 in 3TE-DR1-mediated cap-independent translation in cowpea and tobacco BY-2 protoplasts using a dual-luciferase (Luc) reporter assay system. Most mutations introduced into RNA1 5 UTR in reporter Luc mRNA abolished or greatly reduced cap-independent translation in BY-2 protoplasts, whereas those mutations had no or much milder effects if any on translational activity in cowpea protoplasts. Our results suggest that a stem-loop structure predicted in the 5 proximal region of RNA1 plays important roles in both translation and RNA stability. We also show that 3TE-DR1-mediated cap-independent translation relies on a ribosome-scanning mechanism in both protoplasts.

Collaboration


Dive into the Hiro-oki Iwakawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yukihide Tomari

Institute of Molecular and Cell Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yukihide Tomari

Institute of Molecular and Cell Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge