Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroaki Eshima is active.

Publication


Featured researches published by Hiroaki Eshima.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

In vivo imaging of intracellular Ca2+ after muscle contractions and direct Ca2+ injection in rat skeletal muscle in diabetes

Hiroaki Eshima; Yoshinori Tanaka; Takashi Sonobe; Tadakatsu Inagaki; Toshiaki Nakajima; David C. Poole; Yutaka Kano

The effects of muscle contractions on the profile of postcontraction resting intracellular Ca2+ ([Ca2+]i) accumulation in Type 1 diabetes are unclear. We tested the hypothesis that, following repeated bouts of muscle contractions, the rise in resting [Ca2+]i evident in healthy rats would be increased in diabetic rats and that these changes would be associated with a decreased cytoplasmic Ca2+ -buffering capacity. Adult male Wistar rats were divided randomly into diabetic (DIA; streptozotocin, ip) and healthy control (CONT) groups. Four weeks later, animals were anesthetized and spinotrapezius muscle contractions (10 sets of 50 contractions) were elicited by electrical stimulation (100 Hz). Ca2+ imaging was achieved using Fura-2 AM in the spinotrapezius muscle in vivo (i.e., circulation intact). The ratio (340/380 nm) was determined from fluorescence images following each set of contractions for estimation of [Ca2+]i. Also, muscle Ca2+ buffering was studied in individual myocytes microinjected with 2 mM Ca2+ solution. After muscle contractions, resting [Ca2+]i in DIA increased earlier and more rapidly than in CONT (P < 0.05 vs. precontraction). Peak [Ca2+]i in response to the Ca2+ injection was significantly higher in CONT (25.8 ± 6.0% above baseline) than DIA (10.2 ± 1.1% above baseline). Subsequently, CONT [Ca(2+)]i decreased rapidly (<15 s) to plateau 9-10% above baseline, whereas DIA remained elevated throughout the 60-s measurement window. No differences in SERCA1 and SERCA2 (Ca2+ uptake) protein levels were evident between CONT and DIA, whereas ryanodine receptor (Ca2+ release) protein level and mitochondrial oxidative enzyme activity (succinate dehydrogenase) were decreased in DIA (P < 0.05). In conclusion, diabetes impairs resting [Ca2+]i homeostasis following muscle contractions. Markedly different responses to Ca2+ injection in DIA vs. CONT suggest fundamentally deranged Ca2+ handling.


Cell Calcium | 2014

In vivo calcium regulation in diabetic skeletal muscle

Hiroaki Eshima; David C. Poole; Yutaka Kano

In skeletal muscle, dysfunctional contractile activity has been linked to impaired intracellular Ca(2+) concentration ([Ca(2+)]i) regulation. Muscle force production is impaired and fatigability and muscle fragility deteriorate with diabetes. Use of a novel in vivo model permits investigation of [Ca(2+)]i homeostasis in diabetic skeletal muscle. Within this in vivo environment we have shown that diabetes perturbs the Ca(2+) regulatory system such that resting [Ca(2+)]i homeostasis following muscle contractions is compromised and elevations of [Ca(2+)]i are exacerbated. This review considers the impact of diabetes on the capacity of skeletal muscle to regulate [Ca(2+)]i, following muscle contractions and, in particular, the relationship between muscle fatigue and elevated [Ca(2+)]i in a highly ecologically relevant circulation-intact environment. Importantly, the role of mitochondria in calcium sequestration and the possibility that diabetes impacts this process is explored. Given the profound microcirculatory dysfunction in diabetes this preparation offers the unique opportunity to study the interrelationships among microvascular function, blood-myocyte oxygen flux and [Ca(2+)]i as they relate to enhanced muscle fatigability and exercise intolerance.


Physiological Reports | 2017

Long‐term, but not short‐term high‐fat diet induces fiber composition changes and impaired contractile force in mouse fast‐twitch skeletal muscle

Hiroaki Eshima; Yoshifumi Tamura; Saori Kakehi; Nagomi Kurebayashi; Takashi Murayama; Kyoko Nakamura; Ryo Kakigi; Takao Okada; Takashi Sakurai; Ryuzo Kawamori; Hirotaka Watada

In this study, we investigated the effects of a short‐term and long‐term high‐fat diet (HFD) on morphological and functional features of fast‐twitch skeletal muscle. Male C57BL/6J mice were fed a HFD (60% fat) for 4 weeks (4‐week HFD) or 12 weeks (12‐week HFD). Subsequently, the fast‐twitch extensor digitorum longus muscle was isolated, and the composition of muscle fiber type, expression levels of proteins involved in muscle contraction, and force production on electrical stimulation were analyzed. The 12‐week HFD, but not the 4‐week HFD, resulted in a decreased muscle tetanic force on 100 Hz stimulation compared with control (5.1 ± 1.4 N/g in the 12‐week HFD vs. 7.5 ± 1.7 N/g in the control group; P < 0.05), whereas muscle weight and cross‐sectional area were not altered after both HFD protocols. Morphological analysis indicated that the percentage of type IIx myosin heavy chain fibers, mitochondrial oxidative enzyme activity, and intramyocellular lipid levels increased in the 12‐week HFD group, but not in the 4‐week HFD group, compared with controls (P < 0.05). No changes in the expression levels of calcium handling‐related proteins and myofibrillar proteins (myosin heavy chain and actin) were detected in the HFD models, whereas fast‐troponin T‐protein expression was decreased in the 12‐week HFD group, but not in the 4‐week HFD group (P < 0.05). These findings indicate that a long‐term HFD, but not a short‐term HFD, impairs contractile force in fast‐twitch muscle fibers. Given that skeletal muscle strength largely depends on muscle fiber type, the impaired muscle contractile force by a HFD might result from morphological changes of fiber type composition.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

In vivo Ca2+ buffering capacity and microvascular oxygen pressures following muscle contractions in diabetic rat skeletal muscles: fiber-type specific effects

Hiroaki Eshima; David C. Poole; Yutaka Kano

In Type 1 diabetes, skeletal muscle resting intracellular Ca(2+) concentration ([Ca(2+)]i) homeostasis is impaired following muscle contractions. It is unclear to what degree this behavior is contingent upon fiber type and muscle oxygenation conditions. We tested the hypotheses that: 1) the rise in resting [Ca(2+)]i evident in diabetic rat slow-twitch (type I) muscle would be exacerbated in fast-twitch (type II) muscle following contraction; and 2) these elevated [Ca(2+)]i levels would relate to derangement of microvascular partial pressure of oxygen (PmvO2 ) rather than sarcoplasmic reticulum dysfunction per se. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (CONT) groups. Four weeks later extensor digitorum longus (EDL, predominately type II fibers) and soleus (SOL, predominately type I fibers) muscle contractions were elicited by continuous electrical stimulation (120 s, 100 Hz). Ca(2+) imaging was achieved using fura 2-AM in vivo (i.e., circulation intact). DIA increased fatigability in EDL (P < 0.05) but not SOL. In recovery, SOL [Ca(2+)]i either returned to its resting baseline within 150 s (CONT 1.00 ± 0.02 at 600 s) or was not elevated in recovery at all (DIA 1.03 ± 0.02 at 600 s, P > 0.05). In recovery, EDL CONT [Ca(2+)]i also decreased to values not different from baseline (1.06 ± 0.01, P > 0.05) at 600 s. In marked contrast, EDL DIA [Ca(2+)]i remained elevated for the entire recovery period (i.e., 1.23 ± 0.03 at 600 s, P < 0.05). The inability of [Ca(2+)]i to return to baseline in EDL DIA was not associated with any reduction of SR Ca(2+)-ATPase (SERCA) 1 or SERCA2 protein levels (both increased 30-40%, P < 0.05). However, Pmv(O2) recovery kinetics were markedly slowed in EDL such that mean Pmv(O2) was substantially depressed (CONT 27.9 ± 2.0 vs. DIA 18.4 ± 2.0 Torr, P < 0.05), and this behavior was associated with the elevated [Ca(2+)]i. In contrast, this was not the case for SOL (P > 0.05) in that neither [Ca(2+)]i nor Pmv(O2) were deranged in recovery with DIA. In conclusion, recovery of [Ca(2+)]i homeostasis is impaired in diabetic rat fast-twitch but not slow-twitch muscle in concert with reduced Pmv(O2) pressures.


Journal of Applied Physiology | 2014

The effects of PGC-1α on control of microvascular Po2 kinetics following onset of muscle contractions

Yutaka Kano; Shinji Miura; Hiroaki Eshima; Osamu Ezaki; David C. Poole

During contractions, regulation of microvascular oxygen partial pressure (Pmv(O2)), which drives blood-myocyte O2 flux, is a function of skeletal muscle fiber type and oxidative capacity and can be altered by exercise training. The kinetics of Pmv(O2) during contractions in predominantly fast-twitch muscles evinces a more rapid fall to far lower levels compared with slow-twitch counterparts. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) improves endurance performance, in part, due to mitochondrial biogenesis, a fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. We tested the hypothesis that improvement of exercise capacity by genetic overexpression of PGC-1α would be associated with an altered Pmv(O2) kinetics profile of the fast-twitch (white) gastrocnemius during contractions toward that seen in slow-twitch muscles (i.e., slowed response kinetics and elevated steady-state Pmv(O2)). Phosphorescence quenching techniques were used to measure Pmv(O2) at rest and during separate bouts of twitch (1 Hz) and tetanic (100 Hz) contractions in gastrocnemius muscles of mice with overexpression of PGC-1α and wild-type littermates (WT) mice under isoflurane anesthesia. Muscles of PGC-1α mice exhibited less fatigue than WT (P < 0.01). However, except for the Pmv(O2) response immediately following onset of contractions, WT and PGC-1α mice demonstrated similar Pmv(O2) kinetics. Specifically, the time delay of the Pmv(O2) response was shortened in PGC-1α mice compared with WT (1 Hz: WT, 6.6 ± 2.4 s; PGC-1α, 2.9 ± 0.8 s; 100 Hz: WT, 3.3 ± 1.1 s, PGC-1α, 0.9 ± 0.3 s, both P < 0.05). The ratio of muscle force to Pmv(O2) was higher for the duration of tetanic contractions in PGC-1α mice. Slower dynamics and maintenance of higher Pmv(O2) following muscle contractions is not obligatory for improved fatigue resistance in fast-twitch muscle of PGC-1α mice. Moreover, overexpression of PGC-1α may accelerate O2 utilization kinetics to a greater extent than O2 delivery kinetics.


The Journal of Physiology | 2017

Skeletal muscle microvascular and interstitial from rest to contractions

Daniel M. Hirai; Jesse C. Craig; Trenton D. Colburn; Hiroaki Eshima; Yutaka Kano; William L. Sexton; Timothy I. Musch; David C. Poole

Oxygen pressure gradients across the microvascular walls are essential for oxygen diffusion from blood to tissue cells. At any given flux, the magnitude of these transmural gradients is proportional to the local resistance. The greatest resistance to oxygen transport into skeletal muscle is considered to reside in the short distance between red blood cells and myocytes. Although crucial to oxygen transport, little is known about transmural pressure gradients within skeletal muscle during contractions. We evaluated oxygen pressures within both the skeletal muscle microvascular and interstitial spaces to determine transmural gradients during the rest–contraction transient in anaesthetized rats. The significant transmural gradient observed at rest was sustained during submaximal muscle contractions. Our findings support that the blood–myocyte interface provides substantial resistance to oxygen diffusion at rest and during contractions and suggest that modulations in microvascular haemodynamics and red blood cell distribution constitute primary mechanisms driving increased transmural oxygen flux with contractions.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2017

Improved skeletal muscle Ca2+ regulation in vivo following contractions in mice overexpressing PGC-1α

Hiroaki Eshima; Shinji Miura; Nanami Senoo; Koji Hatakeyama; David C. Poole; Yutaka Kano

In skeletal muscle, resting intracellular Ca2+ concentration ([Ca2+]i) homeostasis is exquisitely regulated by Ca2+ transport across the sarcolemmal, mitochondrial, and sarcoplasmic reticulum (SR) membranes. Of these three systems, the relative importance of the mitochondria in [Ca2+]i regulation remains poorly understood in in vivo skeletal muscle. We tested the hypothesis that the capacity for Ca2+ uptake by mitochondria is a primary factor in determining [Ca2+]i regulation in muscle at rest and following contractions. Tibialis anterior muscle of anesthetized peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)-overexpressing (OE, increased mitochondria model) and wild-type (WT) littermate mice was exteriorized in vivo and loaded with the fluorescent probe fura 2-AM, and Rhod 2-AM Ca2+ buffering and mitochondrial [Ca2+] were evaluated at rest and during recovery from fatiguing tetanic contractions induced by electrical stimulation (120 s, 100 Hz). In addition, the effects of pharmacological inhibition of SR (thapsigargin) and mitochondrial [carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP)] function were examined at rest. [Ca2+]i in WT remained elevated for the entire postcontraction recovery period (+6 ± 1% at 450 s), but in PGC-1α OE [Ca2+]i returned to resting baseline within 150 s. Thapsigargin immediately and substantially increased resting [Ca2+]i in WT, whereas in PGC-1α OE this effect was delayed and markedly diminished (WT, +12 ± 3; PGC-1α OE, +1 ± 2% at 600 s after thapsigargin treatment, P < 0.05). FCCP abolished this improvement of [Ca2+]i regulation in PGC-1α OE. Mitochondrial [Ca2+] accumulation was observed in PGC-1α OE following contractions and thapsigargin treatment. In the SR, PGC-1α OE downregulated SR Ca2+-ATPase 1 (Ca2+ uptake) and parvalbumin (Ca2+ buffering) protein levels, whereas mitochondrial Ca2+ uptake-related proteins (Mfn1, Mfn2, and mitochondrial Ca2+ uniporter) were upregulated. These data demonstrate a heretofore unappreciated role for skeletal muscle mitochondria in [Ca2+]i regulation in vivo following fatiguing tetanic contractions and at rest.


Physiological Reports | 2017

In vivo Ca2+ dynamics induced by Ca2+ injection in individual rat skeletal muscle fibers

Mario Wakizaka; Hiroaki Eshima; Yoshinori Tanaka; Hideki Shirakawa; David C. Poole; Yutaka Kano

In contrast to cardiomyocytes, store overload‐induced calcium ion (Ca2+) release (SOICR) is not considered to constitute a primary Ca2+ releasing system from the sarcoplasmic reticulum (SR) in skeletal muscle myocytes. In the latter, voltage‐induced Ca2+ release (VICR) is regarded as the dominant mechanism facilitating contractions. Any role of the SOICR in the regulation of cytoplasmic Ca2+ concentration ([Ca2+]i) and its dynamics in skeletal muscle in vivo remains poorly understood. By means of in vivo single fiber Ca2+ microinjections combined with bioimaging techniques, we tested the hypothesis that the [Ca2+]i dynamics following Ca2+ injection would be amplified and fiber contraction facilitated by SOICR. The circulation‐intact spinotrapezius muscle of adult male Wistar rats (n = 34) was exteriorized and loaded with Fura‐2 AM to monitor [Ca2+]i dynamics. Groups of rats underwent the following treatments: (1) 0.02, 0.2, and 2.0 mmol/L Ca2+ injections, (2) 2.0 mmol/L Ca2+ with inhibition of ryanodine receptors (RyR) by dantrolene sodium (DAN), and (3) 2.0 mmol/L Ca2+ with inhibition of SR Ca2+ ATPase (SERCA) by cyclopiazonic acid (CPA). A quantity of 0.02 mmol/L Ca2+ injection yielded no detectable response, whereas peak evoked [Ca2+]i increased 9.9 ± 1.8% above baseline for 0.2 mmol/L and 23.8 ± 4.3% (P < 0.05) for 2.0 mmol/L Ca2+ injections. The peak [Ca2+]i in response to 2.0 mmol/L Ca2+ injection was largely abolished by DAN and CPA (−85.8%, −71.0%, respectively, both P < 0.05 vs. unblocked) supporting dependence of the [Ca2+]i dynamics on Ca2+ released by SOICR rather than injected Ca2+ itself. Thus, this investigation demonstrates the presence of a robust SR‐evoked SOICR operant in skeletal muscle in vivo.


The Journal of Physiology | 2018

Skeletal muscle microvascular and interstitial PO2 from rest to contractions: Skeletal muscle transcapillary PO2 gradients

Daniel M. Hirai; Jesse C. Craig; Trenton D. Colburn; Hiroaki Eshima; Yutaka Kano; William L. Sexton; Timothy I. Musch; David C. Poole


The Journal of Physical Fitness and Sports Medicine | 2018

Mitochondrial calcium regulation during and following contractions in skeletal muscle

Hiroaki Eshima; David C. Poole; Yutaka Kano

Collaboration


Dive into the Hiroaki Eshima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshinori Tanaka

University of Electro-Communications

View shared research outputs
Top Co-Authors

Avatar

Tadakatsu Inagaki

University of Electro-Communications

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Osamu Ezaki

Showa Women's University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge