Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hirofumi Fujimoto is active.

Publication


Featured researches published by Hirofumi Fujimoto.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Carotenoid silk coloration is controlled by a carotenoid-binding protein, a product of the Yellow blood gene.

Takashi Sakudoh; Hideki Sezutsu; Takeharu Nakashima; Isao Kobayashi; Hirofumi Fujimoto; Keiro Uchino; Yutaka Banno; Hidetoshi Iwano; Hideaki Maekawa; Toshiki Tamura; Hiroshi Kataoka; Kozo Tsuchida

Mechanisms for the uptake and transport of carotenoids, essential nutrients for humans, are not well understood in any animal system. The Y (Yellow blood) gene, a critical cocoon color determinant in the silkworm Bombyx mori, controls the uptake of carotenoids into the intestinal mucosa and the silk gland. Here we provide evidence that the Y gene corresponds to the intracellular carotenoid-binding protein (CBP) gene. In the Y recessive strain, the absence of an exon, likely due to an incorrect mRNA splicing caused by a transposon-associated genomic deletion, generates a nonfunctional CBP mRNA, resulting in colorless hemolymph and white cocoons. Enhancement of carotenoid uptake and coloration of the white cocoon was achieved by germ-line transformation with the CBP gene. This study demonstrates the existence of a genetically facilitated intracellular process beyond passive diffusion for carotenoid uptake in the animal phyla, and paves the way for modulating silk color and lipid content through genetic engineering.


Journal of Biological Chemistry | 2010

A CD36-related Transmembrane Protein Is Coordinated with an Intracellular Lipid-binding Protein in Selective Carotenoid Transport for Cocoon Coloration

Takashi Sakudoh; Tetsuya Iizuka; Junko Narukawa; Hideki Sezutsu; Isao Kobayashi; Seigo Kuwazaki; Yutaka Banno; Akitoshi Kitamura; Hiromu Sugiyama; Naoko Takada; Hirofumi Fujimoto; Keiko Kadono-Okuda; Kazuei Mita; Toshiki Tamura; Kimiko Yamamoto; Kozo Tsuchida

The transport pathway of specific dietary carotenoids from the midgut lumen to the silk gland in the silkworm, Bombyx mori, is a model system for selective carotenoid transport because several genetic mutants with defects in parts of this pathway have been identified that manifest altered cocoon pigmentation. In the wild-type silkworm, which has both genes, Yellow blood (Y) and Yellow cocoon (C), lutein is transferred selectively from the hemolymph lipoprotein to the silk gland cells where it is accumulated into the cocoon. The Y gene encodes an intracellular carotenoid-binding protein (CBP) containing a lipid-binding domain known as the steroidogenic acute regulatory protein-related lipid transfer domain. Positional cloning and transgenic rescue experiments revealed that the C gene encodes Cameo2, a transmembrane protein gene belonging to the CD36 family genes, some of which, such as the mammalian SR-BI and the fruit fly ninaD, are reported as lipoprotein receptors or implicated in carotenoid transport for visual system. In C mutant larvae, Cameo2 expression was strongly repressed in the silk gland in a specific manner, resulting in colorless silk glands and white cocoons. The developmental profile of Cameo2 expression, CBP expression, and lutein pigmentation in the silk gland of the yellow cocoon strain were correlated. We hypothesize that selective delivery of lutein to specific tissue requires the combination of two components: 1) CBP as a carotenoid transporter in cytosol and 2) Cameo2 as a transmembrane receptor on the surface of the cells.


Journal of Computational Chemistry | 2005

Molecular dynamics simulation of clustered DNA damage sites containing 8-oxoguanine and abasic site.

Hirofumi Fujimoto; Miroslav Pinak; Toshiyuki Nemoto; Peter O'Neill; Etsuo Kume; Kimiaki Saito; Hideaki Maekawa

Clustered DNA damage sites induced by ionizing radiation have been suggested to have serious consequences to organisms, such as cancer, due to their reduced probability to be repaired by the enzymatic repair machinery of the cell. Although experimental results have revealed that clustered DNA damage sites effectively retard the efficient function of repair enzymes, it remains unclear as to what particular factors influence this retardation. In this study, approaches based on molecular dynamics (MD) simulation have been applied to examine conformational changes and energetic properties of DNA molecules containing clustered damage sites consisting of two lesioned sites, namely 7,8‐dihydro‐8‐oxoguanine (8‐oxoG) and apurinic/apyrimidinic (AP) site, located within a few base pairs of each other. After 1 ns of MD simulation, one of the six DNA molecules containing a clustered damage site develops specific characteristic features: sharp bending at the lesioned site and weakening or complete loss of electrostatic interaction energy between 8‐oxoG and bases located on the complementary strand. From these results it is suggested that these changes would make it difficult for the repair enzyme to bind to the lesions within the clustered damage site and thereby result in a reduction of its repair capacity.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2011

Phenylalanine 171 is a molecular brake for translesion synthesis across benzo[a]pyrene-guanine adducts by human DNA polymerase kappa.

Akira Sassa; Naoko Niimi; Hirofumi Fujimoto; Atsushi Katafuchi; Petr Grúz; Manabu Yasui; Ramesh C. Gupta; Francis Johnson; Toshihiro Ohta; Takehiko Nohmi

Human cells possess multiple specialized DNA polymerases (Pols) that bypass a variety of DNA lesions which otherwise would block chromosome replication. Human polymerase kappa (Pol κ) bypasses benzo[a]pyrene diolepoxide-N(2)-deoxyguanine (BPDE-N(2)-dG) DNA adducts in an almost error-free manner. To better understand the relationship between the structural features in the active site and lesion bypass by Pol κ, we mutated codons corresponding to amino acids appearing close to the adducts in the active site, and compared bypass efficiencies. Remarkably, the substitution of alanine for phenylalanine 171 (F171), an amino acid conserved between Pol κ and its bacterial counterpart Escherichia coli DinB, enhanced the efficiencies of dCMP incorporation opposite (-)- and (+)-trans-anti-BPDE-N(2)-dG 18-fold. This substitution affected neither the fidelity of TLS nor the efficiency of dCMP incorporation opposite normal guanine. This amino acid change also enhanced the binding affinity of Pol κ to template/primer DNA containing (-)-trans-anti-BPDE-N(2)-dG. These results suggest that F171 functions as a molecular brake for TLS across BPDE-N(2)-dG by Pol κ and that the F171A derivative of Pol κ bypasses these DNA lesions more actively than does the wild-type enzyme.


Genetics | 2011

Diversity in Copy Number and Structure of a Silkworm Morphogenetic Gene as a Result of Domestication

Takashi Sakudoh; Takeharu Nakashima; Yoko Kuroki; Asao Fujiyama; Yuji Kohara; Naoko Honda; Hirofumi Fujimoto; Toru Shimada; Masao Nakagaki; Yutaka Banno; Kozo Tsuchida

The carotenoid-binding protein (CBP) of the domesticated silkworm, Bombyx mori, a major determinant of cocoon color, is likely to have been substantially influenced by domestication of this species. We analyzed the structure of the CBP gene in multiple strains of B. mori, in multiple individuals of the wild silkworm, B. mandarina (the putative wild ancestor of B. mori), and in a number of other lepidopterans. We found the CBP gene copy number in genomic DNA to vary widely among B. mori strains, ranging from 1 to 20. The copies of CBP are of several types, based on the presence of a retrotransposon or partial deletion of the coding sequence. In contrast to B. mori, B. mandarina was found to possess a single copy of CBP without the retrotransposon insertion, regardless of habitat. Several other lepidopterans were found to contain sequences homologous to CBP, revealing that this gene is evolutionarily conserved in the lepidopteran lineage. Thus, domestication can generate significant diversity of gene copy number and structure over a relatively short evolutionary time.


Journal of Computational Chemistry | 2012

A possible overestimation of the effect of acetylation on lysine residues in KQ mutant analysis.

Hirofumi Fujimoto; Mariko Higuchi; Manabu Koike; Hirotaka Ode; Miroslav Pinak; Juraj Kotulic Bunta; Toshiyuki Nemoto; Takashi Sakudoh; Naoko Honda; Hideaki Maekawa; Kimiaki Saito; Kozo Tsuchida

Acetylation of lysine residues, one of the most common protein post‐transcriptional modifications, is thought to regulate protein affinity with other proteins or nucleotides. Experimentally, the effects of acetylation have been studied using recombinant mutants in which lysine residues (K) are substituted with glutamine (Q) as a mimic of acetyl lysine (KQ mutant), or with arginine (R) as a mimic of nonacetylated lysine (KR mutant). These substitutions, however, have not been properly validated. The effects lysine acetylation on Ku, a multifunctional protein that has been primarily implicated in DNA repair and cell survival, are characterized herein using a series of computer simulations. The binding free energy was reduced in the KQ mutant, while the KR mutant had no effect, which is consistent with previous experimental results. Unexpectedly, the binding energy between Ku and DNA was maintained at almost the same level as in the wild type protein despite full acetylation of the lysine residues. These results suggest that the effects of acetylation may be overestimated when the KQ mutant is used as a mimic of the acetylated protein.


Journal of Insect Physiology | 2009

Purification and expression analysis of imaginal disc growth factor in the silkworm, Bombyx mori.

Hua-Bing Wang; Takashi Sakudoh; Hideki Kawasaki; Masashi Iwanaga; Katsue Araki; Hirofumi Fujimoto; Naoko Takada; Hidetoshi Iwano; Kozo Tsuchida

In the present study, we purified and sequenced a homolog of the Drosophila imaginal disc growth factor (IDGF) from the hemolymph of Bombyx mori (BmIDGF). Antibodies against BmIDGF were produced and subsequently used in immunoblotting analyses. The immunoblotting analyses demonstrated an extremely high level of BmIDGF in the hemolymph throughout the period of rapid growth of the organs of B. mori. The results of RT-PCR showed that BmIDGF was predominantly expressed in fat bodies. Real-time RT-PCR revealed that BmIDGF transcripts in fat bodies were highly expressed during the feeding stage but significantly suppressed during the molting, wandering, and pupal stages. Starvation brought about a significant decline of BmIDGF mRNAs in the fat bodies and BmIDGF proteins in the hemolymph. After re-feeding, the BmIDGF transcripts in fat bodies and BmIDGF proteins in the hemolymph increased again. In addition, an immunocytochemical study revealed BmIDGF proteins on the surface of wing discs. The present findings suggest that the level of BmIDGF in the hemolymph was modulated by the fat body in response to nutritional conditions and that BmIDGF was transported to target organs through the hemolymph.


Journal of Lipid Research | 2013

Lipid transfer particle from the silkworm, Bombyx mori, is a novel member of the apoB/large lipid transfer protein family.

Hiroshi Yokoyama; Takeru Yokoyama; Masashi Yuasa; Hirofumi Fujimoto; Takashi Sakudoh; Naoko Honda; Hajime Fugo; Kozo Tsuchida

Lipid transfer particle (LTP) is a high-molecular-weight, very high-density lipoprotein known to catalyze the transfer of lipids between a variety of lipoproteins, including both insects and vertebrates. Studying the biosynthesis and regulation pathways of LTP in detail has not been possible due to a lack of information regarding the apoproteins. Here, we sequenced the cDNA and deduced amino acid sequences for three apoproteins of LTP from the silkworm (Bombyx mori). The three subunit proteins of the LTP are coded by two genes, apoLTP-II/I and apoLTP-III. ApoLTP-I and apoLTP-II are predicted to be generated by posttranslational cleavage of the precursor protein, apoLTP-II/I. Clusters of amphipathic secondary structure within apoLTP-II/I are similar to Homo sapiens apolipoprotein B (apoB) and insect lipophorins. The apoLTP-II/I gene is a novel member of the apoB/large lipid transfer protein gene family. ApoLTP-III has a putative conserved juvenile hormone-binding protein superfamily domain. Expression of apoLTP-II/I and apoLTP-III genes was synchronized and both genes were primarily expressed in the fat body at the stage corresponding to increased lipid transport needs. We are now in a position to study in detail the physiological role of LTP and its biosynthesis and assembly.


Comparative Biochemistry and Physiology B | 2010

Apolipophorin-III expression and low density lipophorin formation during embryonic development of the silkworm, Bombyx mori.

Kozo Tsuchida; Takeru Yokoyama; Takashi Sakudoh; Chihiro Katagiri; Shuichiro Tsurumaru; Naoko Takada; Hirofumi Fujimoto; Rolf Ziegler; Hidetoshi Iwano; Kunikatsu Hamano; Toshinobu Yaginuma

We examined the expression of apolipophorin-III (apoLp-III) during embryonic development of the silkworm Bombyx mori. ApoLp-III mRNA was first expressed 24h after oviposition, which corresponds to the time of germ band formation. The amount of apoLp-III in the eggs increased from day 2, peaked on day 4, and then gradually decreased until hatching (on day 9.5). ApoLp-III was apparently synthesized during early embryogenesis, as radioactive amino acids were incorporated into newly synthesized apoLp-III in three-day-old eggs. Moreover, radioactive apoLp-III was found only in the embryo and not in the extraembryonic tissue. KBr density gradient ultracentrifugation of egg homogenates showed that apoLp-III was associated with low-density lipophorin (LDLp). These results suggest that LDLp is required for the delivery of lipids for organogenesis during embryogenesis.


DNA Repair | 2014

In vivo evidence that phenylalanine 171 acts as a molecular brake for translesion DNA synthesis across benzo[a]pyrene DNA adducts by human DNA polymerase κ

Akira Sassa; Tetsuya Suzuki; Yuki Kanemaru; Naoko Niimi; Hirofumi Fujimoto; Atsushi Katafuchi; Petr Grúz; Manabu Yasui; Ramesh C. Gupta; Francis Johnson; Toshihiro Ohta; Masamitsu Honma; Noritaka Adachi; Takehiko Nohmi

Humans possess multiple specialized DNA polymerases that continue DNA replication beyond a variety of DNA lesions. DNA polymerase kappa (Pol κ) bypasses benzo[a]pyrene diolepoxide-N(2)-deoxyguanine (BPDE-N(2)-dG) DNA adducts in an almost error-free manner. In the previous work, we changed the amino acids close to the adducts in the active site and examined the bypass efficiency. The substitution of alanine for phenylalanine 171 (F171A) enhanced by 18-fold in vitro, the efficiencies of dCMP incorporation opposite (-)- and (+)-trans-anti-BPDE-N(2)-dG. In the present study, we established human cell lines that express wild-type Pol κ (POLK+/-), F171A (POLK F171A/-) or lack expression of Pol κ (POLK-/-) to examine the in vivo significance. These cell lines were generated with Nalm-6, a human pre-B acute lymphoblastic leukemia cell line, which has high efficiency for gene targeting. Mutations were analyzed with shuttle vectors having (-)- or (+)-trans-anti-BPDE-N(2)-dG in the supF gene. The frequencies of mutations were in the order of POLK-/->POLK+/->POLK F171A/- both in (-)- and (+)-trans-anti-BPDE-N(2)-dG. These results suggest that F171 may function as a molecular brake for bypass across BPDE-N(2)-dG by Pol κ and raise the possibility that the cognate substrates for Pol κ are not BP adducts in DNA but may be lesions in DNA induced by endogenous mutagens.

Collaboration


Dive into the Hirofumi Fujimoto's collaboration.

Top Co-Authors

Avatar

Kozo Tsuchida

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hideaki Maekawa

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Naoko Takada

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Sakudoh

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kazuo Hashido

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Naoko Honda

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kimiaki Saito

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Hajime Fugo

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Yumiko Nakajima

University of the Ryukyus

View shared research outputs
Researchain Logo
Decentralizing Knowledge