Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hirofumi Nishizono is active.

Publication


Featured researches published by Hirofumi Nishizono.


Science | 2017

Overlapping memory trace indispensable for linking, but not recalling, individual memories

Jun Yokose; Reiko Okubo-Suzuki; Masanori Nomoto; Noriaki Ohkawa; Hirofumi Nishizono; Akinobu Suzuki; Mina Matsuo; Shuhei Tsujimura; Yukari Takahashi; Masashi Nagase; Ayako M. Watabe; Masakiyo Sasahara; Fusao Kato; Kaoru Inokuchi

Unrelated memories get blurred together If one retrieves two memories around the same time, a small number of neurons will become involved in both memories. Yokose et al. investigated the cellular ensemble mechanisms underlying the association between two such memories. In mice, a small population of neurons mediates the association. Memory traces for two independent emotional memories in the brain partially overlapped when the two memories were retrieved synchronously to create a linkage. Suppressing the activity of the overlapping memory trace interrupted the linkage without damaging the original memories. Science, this issue p. 398 In mice, repeated simultaneous reactivation of two initially separated memory traces links them together. Memories are not stored in isolation from other memories but are integrated into associative networks. However, the mechanisms underlying memory association remain elusive. Using two amygdala-dependent behavioral paradigms—conditioned taste aversion (CTA) and auditory-cued fear conditioning (AFC)—in mice, we found that presenting the conditioned stimulus used for the CTA task triggered the conditioned response of the AFC task after natural coreactivation of the memories. This was accompanied through an increase in the overlapping neuronal ensemble in the basolateral amygdala. Silencing of the overlapping ensemble suppressed CTA retrieval-induced freezing. However, retrieval of the original CTA or AFC memory was not affected. A small population of coshared neurons thus mediates the link between memories. They are not necessary for recalling individual memories.


Nature Communications | 2016

Cellular tagging as a neural network mechanism for behavioural tagging

Masanori Nomoto; Noriaki Ohkawa; Hirofumi Nishizono; Jun Yokose; Akinobu Suzuki; Mina Matsuo; Shuhei Tsujimura; Yukari Takahashi; Masashi Nagase; Ayako M. Watabe; Fusao Kato; Kaoru Inokuchi

Behavioural tagging is the transformation of a short-term memory, induced by a weak experience, into a long-term memory (LTM) due to the temporal association with a novel experience. The mechanism by which neuronal ensembles, each carrying a memory engram of one of the experiences, interact to achieve behavioural tagging is unknown. Here we show that retrieval of a LTM formed by behavioural tagging of a weak experience depends on the degree of overlap with the neuronal ensemble corresponding to a novel experience. The numbers of neurons activated by weak training in a novel object recognition (NOR) task and by a novel context exploration (NCE) task, denoted as overlapping neurons, increases in the hippocampal CA1 when behavioural tagging is successfully achieved. Optical silencing of an NCE-related ensemble suppresses NOR–LTM retrieval. Thus, a population of cells recruited by NOR is tagged and then preferentially incorporated into the memory trace for NCE to achieve behavioural tagging.


Molecular Brain | 2012

Hippocampal function is not required for the precision of remote place memory.

Takashi Kitamura; Reiko Okubo-Suzuki; Noriko Takashima; Akiko Murayama; Toshiaki Hino; Hirofumi Nishizono; Satoshi Kida; Kaoru Inokuchi

BackgroundDuring permanent memory formation, recall of acquired place memories initially depends on the hippocampus and eventually become hippocampus-independent with time. It has been suggested that the quality of original place memories also transforms from a precise form to a less precise form with similar time course. The question arises of whether the quality of original place memories is determined by brain regions on which the memory depends.ResultsTo directly test this idea, we introduced a new procedure: a non-associative place recognition memory test in mice. Combined with genetic and pharmacological approaches, our analyses revealed that place memory is precisely maintained for 28 days, although the recall of place memory shifts from hippocampus-dependent to hippocampus-independent with time. Moreover, the inactivation of the hippocampal function does not inhibit the precision of remote place memory.ConclusionThese results indicate that the quality of place memories is not determined by brain regions on which the memory depends.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2014

Role of transient receptor potential vanilloid 4 activation in indomethacin-induced intestinal damage

Hidemoto Yamawaki; Hiroshi Mihara; Nobuhiro Suzuki; Hirofumi Nishizono; Kunitoshi Uchida; Shiro Watanabe; Makoto Tominaga; Toshiro Sugiyama

Gastrointestinal ulcers and bleeding are serious complications of nonsteroidal anti-inflammatory drug (NSAID) use. Although administration of antibiotics and Toll-like receptor 4 knockdown mitigate NSAID-induced enteropathy, the molecular mechanism of these effects is poorly understood. Intestinal hyperpermeability is speculated to trigger the initial damage due to NSAID use. Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel expressed throughout the gastrointestinal tract epithelium that is activated by temperature, extension, and chemicals such as 5,6-epoxyeicosatrienoic acid (5,6-EET). The aim of this study was to investigate the possible role of TRPV4 in NSAID-induced intestinal damage. TRPV4 mRNA and protein expression was confirmed by RT-PCR and immunochemistry, respectively, in mouse and human tissues while TRPV4 channel activity of the intestinal cell line IEC-6 was assessed by Ca(2+)-imaging analysis. TRPV4 activators or the NSAID indomethacin significantly decreased transepithelial resistance (TER) in IEC-6 cells, and indomethacin-induced TER decreases were inhibited by specific TRPV4 inhibitors or small-interfering RNA TRPV4 knockdown, as well as by the epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide, which decreased 5,6-EET levels. In TRPV4 knockout mice, indomethacin-induced intestinal damage was significantly reduced compared with WT mice. Taken together, these results show that TRPV4 activation in the intestinal epithelium caused epithelial hyperpermeability in response to NSAID-induced arachidonic acid metabolites and contributed to NSAID-induced intestinal damage. Thus, TRPV4 could be a promising new therapeutic target for the prevention of NSAID-induced intestinal damage.


Scientific Reports | 2016

PDGFRα plays a crucial role in connective tissue remodeling.

Shinjiro Horikawa; Yoko Ishii; Takeru Hamashima; Seiji Yamamoto; Hisashi Mori; Toshihiko Fujimori; Jie Shen; Ran Inoue; Hirofumi Nishizono; Hiroshi Itoh; Masataka Majima; David J. Abraham; Toshio Miyawaki; Masakiyo Sasahara

Platelet derived growth factor (PDGF) plays a pivotal role in the remodeling of connective tissues. Emerging data indicate the distinctive role of PDGF receptor-α (PDGFRα) in this process. In the present study, the Pdgfra gene was systemically inactivated in adult mouse (α-KO mouse), and the role of PDGFRα was examined in the subcutaneously implanted sponge matrices. PDGFRα expressed in the fibroblasts of Pdgfra-preserving control mice (Flox mice), was significantly reduced in the sponges in α-KO mice. Neovascularized areas were largely suppressed in the α-KO mice than in the Flox mice, whereas the other parameters related to the blood vessels and endothelial cells were similar. The deposition of collagen and fibronectin and the expression of collagen 1a1 and 3a1 genes were significantly reduced in α-KO mice. There was a significantly decrease in the number and dividing fibroblasts in the α-KO mice, and those of macrophages were similar between the two genotypes. Hepatocyte growth factor (Hgf) gene expression was suppressed in Pdgfra-inactivated fibroblasts and connective tissue. The findings implicate the role of PDGFRα-dependent ECM and HGF production in fibroblasts that promotes the remodeling of connective tissue and suggest that PDGFRα may be a relevant target to regulate connective tissue remodeling.


Science | 2018

Synapse-specific representation of the identity of overlapping memory engrams

Kareem Abdou; Mohammad Shehata; Kiriko Choko; Hirofumi Nishizono; Mina Matsuo; Shin-ichi Muramatsu; Kaoru Inokuchi

Disentangling specific memories Each memory is stored in a distinct memory trace in the brain, in a specific population of neurons called engram cells. How does the brain store and define the identity of a specific memory when two memories interact and are encoded in a shared engram? Abdou et al. used optogenetic reactivation coupled with manipulations of long-term potentiation to analyze engrams that share neurons in the lateral amygdala (see the Perspective by Ramirez). Synapse-specific plasticity guaranteed the storage and the identity of individual memories in a shared engram. Moreover, synaptic plasticity between specific engram assemblies was necessary and sufficient for memory engram formation. Science, this issue p. 1227; see also p. 1182 Memory identity is defined by plasticity occurring at specific synapses that underlie each memory trace. Memories are integrated into interconnected networks; nevertheless, each memory has its own identity. How the brain defines specific memory identity out of intermingled memories stored in a shared cell ensemble has remained elusive. We found that after complete retrograde amnesia of auditory fear conditioning in mice, optogenetic stimulation of the auditory inputs to the lateral amygdala failed to induce memory recall, implying that the memory engram no longer existed in that circuit. Complete amnesia of a given fear memory did not affect another linked fear memory encoded in the shared ensemble. Optogenetic potentiation or depotentiation of the plasticity at synapses specific to one memory affected the recall of only that memory. Thus, the sharing of engram cells underlies the linkage between memories, whereas synapse-specific plasticity guarantees the identity and storage of individual memories.


American Journal of Pathology | 2016

Glioma-Derived Platelet-Derived Growth Factor-BB Recruits Oligodendrocyte Progenitor Cells via Platelet-Derived Growth Factor Receptor-α and Remodels Cancer Stroma

Yang Zheng; Seiji Yamamoto; Yoko Ishii; Yang Sang; Takeru Hamashima; Nguyen Van De; Hirofumi Nishizono; Ran Inoue; Hisashi Mori; Masakiyo Sasahara

Glioma is an aggressive and incurable disease, and is frequently accompanied by augmented platelet-derived growth factor (PDGF) signaling. Overexpression of PDGF-B ligand characterizes a specific subclass of glioblastoma multiforme, but the significance of the ligand remains to be elucidated. For this end, we implanted a glioma-cell line transfected with PDGF-BB-overexpressing vector (GL261-PDGF-BB) or control vector (GL261-vector) into wild-type mouse brain, and examined the effect of glioma-derived PDGF on the tumor microenvironment. The volume of GL261-PDGF-BB rapidly increased compared with GL261-vector. Recruitment of many PDGF receptor (PDGFR)-α and Olig2-positive oligodendrocyte precursor cells and frequent hemorrhages were observed in GL261-PDGF-BB but not in GL261-vector. We then implanted GL261-PDGF-BB into the mouse brain with and without Pdgfra gene inactivation, corresponding to PDGFRα-knockout (KO) and Flox mice, respectively. The recruitment of oligodendrocyte precursor cells was largely suppressed in PDGFRα-KO than in Flox, whereas the volume of GL261-PDGF-BB was comparable between the two genotypes. Frequent hemorrhage and increased IgG-leakage were associated with aberrant vascular structures within the area where many recruited oligodendrocyte precursor cells accumulated in Flox. In contrast, these vascular phenotypes were largely normalized in PDGFRα-KO. Increased matrix metalloproteinase-9 in recruited oligodendrocyte precursor cells and decreased claudin-5 in vasculature may underlie the vascular abnormality. Glioma-derived PDGF-B signal induces cancer stroma characteristically seen in high-grade glioma, and should be therapeutically targeted to improve cancer microenvironment.


The Journal of Neuroscience | 2018

Autophagy enhances memory erasure through synaptic destabilization

Mohammad Shehata; Kareem Abdou; Kiriko Choko; Mina Matsuo; Hirofumi Nishizono; Kaoru Inokuchi

There is substantial interest in memory reconsolidation as a target for the treatment of anxiety disorders, such as post-traumatic stress disorder. However, its applicability is restricted by reconsolidation-resistant boundary conditions that constrain the initial memory destabilization. In this study, we investigated whether the induction of synaptic protein degradation through autophagy modulation, a major protein degradation pathway, can enhance memory destabilization upon retrieval and whether it can be used to overcome these conditions. Here, using male mice in an auditory fear reconsolidation model, we showed that autophagy contributes to memory destabilization and its induction can be used to enhance erasure of a reconsolidation-resistant auditory fear memory that depended on AMPAR endocytosis. Using male mice in a contextual fear reconsolidation model, autophagy induction in the amygdala or in the hippocampus enhanced fear or contextual memory destabilization, respectively. The latter correlated with AMPAR degradation in the spines of the contextual memory-ensemble cells. Using male rats in an in vivo LTP reconsolidation model, autophagy induction enhanced synaptic destabilization in an NMDAR-dependent manner. These data indicate that induction of synaptic protein degradation can enhance both synaptic and memory destabilization upon reactivation and that autophagy inducers have the potential to be used as a therapeutic tool in the treatment of anxiety disorders. SIGNIFICANCE STATEMENT It has been reported that inhibiting synaptic protein degradation prevents memory destabilization. However, whether the reverse relation is true and whether it can be used to enhance memory destabilization are still unknown. Here we addressed this question on the behavioral, molecular, and synaptic levels, and showed that induction of autophagy, a major protein degradation pathway, can enhance memory and synaptic destabilization upon reactivation. We also show that autophagy induction can be used to overcome a reconsolidation-resistant memory, suggesting autophagy inducers as a potential therapeutic tool in the treatment of anxiety disorders.


Digestive Diseases and Sciences | 2015

Protease-Activated Receptor-2 Up-Regulates Transient Receptor Potential Vanilloid 4 Function in Mouse Esophageal Keratinocyte.

Nobuhiro Suzuki; Hiroshi Mihara; Hirofumi Nishizono; Makoto Tominaga; Toshiro Sugiyama

BackgroundThe reflux of pancreatic–duodenal fluids is implicated in the pathophysiology of proton-pump inhibitor-resistant gastroesophageal reflux disease (GERD). Protease-activated receptor-2 (PAR-2) is activated by proteases, the pancreatic enzyme, trypsin, and the activated PAR-2 enhances transient receptor potential vanilloid 4 (TRPV4) function in neurons. TRPV4 stimulates ATP exocytosis in conjunction with the vesicular nucleotide transporter, which mediates mechano-transduction and vagal stimulation. The aim of the present study was to verify whether the activated PAR-2 up-regulates TRPV4 function in mouse esophageal keratinocytes, which may link to the pathophysiology in PPI-resistant GERD.MethodsTRPV4 and PAR-2 expressions were detected by RT-PCR, immunostaining, and western blotting in mouse esophageal keratinocytes. The functional response of TRPV4 to esophageal keratinocytes was analyzed using a Ca2+ imaging system. Cellular ATP release was examined by luciferase–luciferin reaction. TRPV4 phosphorylation was studied by immunoprecipitation and western blotting.ResultsPAR-2 and TRPV4 mRNAs and proteins were expressed in esophageal keratinocytes. Pre-treatment with trypsin significantly increased the responses to TRPV4 activator in esophageal keratinocytes, probably via the phosphorylation of serine residue of TRPV4 by protein kinase C and resulted in cellular ATP release from the cells.ConclusionsActivated PAR-2 with trypsin exposure up-regulated TRPV4 function and increased ATP release in mouse esophageal keratinocytes. This mechanism might be related to the pathophysiology of GERD, especially non-erosive GERD.


Scientific Reports | 2018

CD11c+ M1-like macrophages (MΦs) but not CD206+ M2-like MΦ are involved in folliculogenesis in mice ovary

Yosuke Ono; Miwako Nagai; Osamu Yoshino; Kaori Koga; Allah Nawaz; Hideki Hatta; Hirofumi Nishizono; Gentaro Izumi; Akitoshi Nakashima; Johji Imura; Kazuyuki Tobe; Tomoyuki Fujii; Yutaka Osuga; Shigeru Saito

Macrophages (MΦs) are involved in folliculogenesis and ovulation. However, it is unknown which type of MΦ, M1 or M2, plays a more essential role in the ovary. CD206 or CD11c diphtheria toxin receptor transgenic (DTR) mice, which enable depletion of CD206+ M2 MΦs and CD11c+ MΦ or CD11c+ Dendritic cells (DCs), respectively, were used. Oocytes were used for in vitro fertilization and embryo transfer. In vitro fertilized embryos derived from M2 MΦ depleted oocytes were transferred to pseudo pregnant wild type mice. CD11c DTR mice were also used to investigate the role of CD11c cells, M1 MΦ and DCs in folliculogenesis. In WT mice, the proportion of CD206+ M2-like MΦs was not increased in follicular induction, while that of CD11c+ M1-like MΦs was increased. In CD206 DTR mice, folliculogenesis was normal and the ovulation number, fertilization rate, and implantation rate were similar to those in WT mice. In CD11c DTR mice, folliculogenesis was impaired with ovarian hemorrhage and the staining of platelet derived growth factor-receptor β (PDGF-Rβ), a marker of pericytes, and CD34, a marker of endothelial cells, was reduced. CD11c+ cells, M1 MΦs or DCs, may be involved in folliculogenesis, while M2 MΦs are not involved in folliculogenesis.

Collaboration


Dive into the Hirofumi Nishizono's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayako M. Watabe

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Fusao Kato

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Makoto Tominaga

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masashi Nagase

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge