Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hirofumi Shoun is active.

Publication


Featured researches published by Hirofumi Shoun.


Applied and Environmental Microbiology | 2003

Aerobic Denitrifying Bacteria That Produce Low Levels of Nitrous Oxide

Naoki Takaya; Maria Antonina B. Catalan-Sakairi; Yasushi Sakaguchi; Isao Kato; Zhemin Zhou; Hirofumi Shoun

ABSTRACT Most denitrifiers produce nitrous oxide (N2O) instead of dinitrogen (N2) under aerobic conditions. We isolated and characterized novel aerobic denitrifiers that produce low levels of N2O under aerobic conditions. We monitored the denitrification activities of two of the isolates, strains TR2 and K50, in batch and continuous cultures. Both strains reduced nitrate (NO3−) to N2 at rates of 0.9 and 0.03 μmol min−1 unit of optical density at 540 nm−1 at dissolved oxygen (O2) (DO) concentrations of 39 and 38 μmol liter−1, respectively. At the same DO level, the typical denitrifier Pseudomonas stutzeri and the previously described aerobic denitrifier Paracoccus denitrificans did not produce N2 but evolved more than 10-fold more N2O than strains TR2 and K50 evolved. The isolates denitrified NO3− with concomitant consumption of O2. These results indicated that strains TR2 and K50 are aerobic denitrifiers. These two isolates were taxonomically placed in the β subclass of the class Proteobacteria and were identified as P. stutzeri TR2 and Pseudomonas sp. strain K50. These strains should be useful for future investigations of the mechanisms of denitrifying bacteria that regulate N2O emission, the single-stage process for nitrogen removal, and microbial N2O emission into the ecosystem.


Bioresource Technology | 2010

Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria.

Sang-Wan Kim; Morio Miyahara; Shinya Fushinobu; Takayoshi Wakagi; Hirofumi Shoun

Nitrous oxide (N(2)O) is emitted during the aerated nitrification process of wastewater treatment, but its mechanism is not understood. In this study, we employed a model system to clarify the mechanism of N(2)O emission, utilizing the activated sludge derived from a piggery effluent. Aerated incubation of the sludge with ammonium (NH(4)(+)) or hydroxylamine (NH(2)OH) resulted in the emission of a significant amount of N(2)O. The emission stopped when the nitrification substrate (NH(4)(+) or NH(2)OH) was exhausted. When NH(4)(+) was replaced with nitrate (NO(3)(-)) and nitrite (NO(2)(-)), no N(2)O was emitted. This result suggests that the N(2)O emission under nitrifying conditions did not depend on the oxidation of NO(2)(-) by nitrite-oxidizing bacteria (NOB) or denitrification by heterotrophic denitrifiers but depended on the oxidation of NH(4)(+) by ammonia-oxidizing bacteria (AOB). When NO(2)(-), the product of nitrification by AOB, was added to the NH(4)(+)-oxidizing system, N(2)O emission was enormously enhanced, suggesting that N(2)O was formed via denitrification. Diethyldithiocarbamate (DCD), an inhibitor of copper-containing nitrite reductase (NirK), strongly blocked N(2)O emission from NH(2)OH. Furthermore, the expression of the gene (nirK) encoding NirK of AOB was detected in the sludge exposed to the nitrifying conditions. The results showed that N(2)O emission during the nitrification process depends on denitrification by AOB that reside in the activated sludge. This study provides direct evidence for the cause of N(2)O emission from activated sludge (non-pure culture).


Philosophical Transactions of the Royal Society B | 2012

Fungal denitrification and nitric oxide reductase cytochrome P450nor

Hirofumi Shoun; Shinya Fushinobu; Li Jiang; Sang-Wan Kim; Takayoshi Wakagi

We have shown that many fungi (eukaryotes) exhibit distinct denitrifying activities, although occurrence of denitrification was previously thought to be restricted to bacteria (prokaryotes), and have characterized the fungal denitrification system. It comprises NirK (copper-containing nitrite reductase) and P450nor (a cytochrome P450 nitric oxide (NO) reductase (Nor)) to reduce nitrite to nitrous oxide (N2O). The system is localized in mitochondria functioning during anaerobic respiration. Some fungal systems further contain and use dissimilatory and assimilatory nitrate reductases to denitrify nitrate. Phylogenetic analysis of nirK genes showed that the fungal-denitrifying system has the same ancestor as the bacterial counterpart and suggested a possibility of its proto-mitochondrial origin. By contrast, fungi that have acquired a P450 from bacteria by horizontal transfer of the gene, modulated its function to give a Nor activity replacing the original Nor with P450nor. P450nor receives electrons directly from nicotinamide adenine dinucleotide to reduce NO to N2O. The mechanism of this unprecedented electron transfer has been extensively studied and thoroughly elucidated. Fungal denitrification is often accompanied by a unique phenomenon, co-denitrification, in which a hybrid N2 or N2O species is formed upon the combination of nitrogen atoms of nitrite with a nitrogen donor (amines and imines). Possible involvement of NirK and P450nor is suggested.


Journal of Biological Chemistry | 2008

Structural and thermodynamic analyses of solute-binding Protein from Bifidobacterium longum specific for core 1 disaccharide and lacto-N-biose I.

Ryuichiro Suzuki; Jun Wada; Takane Katayama; Shinya Fushinobu; Takayoshi Wakagi; Hirofumi Shoun; Hayuki Sugimoto; Akiyoshi Tanaka; Hidehiko Kumagai; Hisashi Ashida; Motomitsu Kitaoka; Kenji Yamamoto

Recently, a gene cluster involving a phosphorylase specific for lacto-N-biose I (LNB; Galβ1–3GlcNAc) and galacto-N-biose (GNB; Galβ1–3GalNAc) has been found in Bifidobacterium longum. We showed that the solute-binding protein of a putative ATP-binding cassette-type transporter encoded in the cluster crystallizes only in the presence of LNB or GNB, and therefore we named it GNB/LNB-binding protein (GL-BP). Isothermal titration calorimetry measurements revealed that GL-BP specifically binds LNB and GNB with Kd values of 0.087 and 0.010 μm, respectively, and the binding process is enthalpy-driven. The crystal structures of GL-BP complexed with LNB, GNB, and lacto-N-tetraose (Galβ1–3GlcNAcβ1–3Galβ1–4Glc) were determined. The interactions between GL-BP and the disaccharide ligands mainly occurred through water-mediated hydrogen bonds. In comparison with the LNB complex, one additional hydrogen bond was found in the GNB complex. These structural characteristics of ligand binding are in agreement with the thermodynamic properties. The overall structure of GL-BP was similar to that of maltose-binding protein; however, the mode of ligand binding and the thermodynamic properties of these proteins were significantly different.


Applied and Environmental Microbiology | 2010

Potential of Aerobic Denitrification by Pseudomonas stutzeri TR2 To Reduce Nitrous Oxide Emissions from Wastewater Treatment Plants

Morio Miyahara; Sang-Wan Kim; Shinya Fushinobu; Koki Takaki; Takeshi Yamada; Akira Watanabe; Keisuke Miyauchi; Ginro Endo; Takayoshi Wakagi; Hirofumi Shoun

ABSTRACT In contrast to most denitrifiers studied so far, Pseudomonas stutzeri TR2 produces low levels of nitrous oxide (N2O) even under aerobic conditions. We compared the denitrification activity of strain TR2 with those of various denitrifiers in an artificial medium that was derived from piggery wastewater. Strain TR2 exhibited strong denitrification activity and produced little N2O under all conditions tested. Its growth rate under denitrifying conditions was near comparable to that under aerobic conditions, showing a sharp contrast to the lower growth rates of other denitrifiers under denitrifying conditions. Strain TR2 was tolerant to toxic nitrite, even utilizing it as a good denitrification substrate. When both nitrite and N2O were present, strain TR2 reduced N2O in preference to nitrite as the denitrification substrate. This bacterial strain was readily able to adapt to denitrifying conditions by expressing the denitrification genes for cytochrome cd1 nitrite reductase (NiR) (nirS) and nitrous oxide reductase (NoS) (nosZ). Interestingly, nosZ was constitutively expressed even under nondenitrifying, aerobic conditions, consistent with our finding that strain TR2 preferred N2O to nitrite. These properties of strain TR2 concerning denitrification are in sharp contrast to those of well-characterized denitrifiers. These results demonstrate that some bacterial species, such as strain TR2, have adopted a strategy for survival by preferring denitrification to oxygen respiration. The bacterium was also shown to contain the potential to reduce N2O emissions when applied to sewage disposal fields.


Journal of Biological Chemistry | 2004

Fungal Ammonia Fermentation, a Novel Metabolic Mechanism That Couples the Dissimilatory and Assimilatory Pathways of Both Nitrate and Ethanol ROLE OF ACETYL CoA SYNTHETASE IN ANAEROBIC ATP SYNTHESIS

Kazuto Takasaki; Hirofumi Shoun; Masashi Yamaguchi; Kanji Takeo; Akira Nakamura; Takayuki Hoshino; Naoki Takaya

Fungal ammonia fermentation is a novel dissimilatory metabolic mechanism that supplies energy under anoxic conditions. The fungus Fusarium oxysporum reduces nitrate to ammonium and simultaneously oxidizes ethanol to acetate to generate ATP (Zhou, Z., Takaya, N., Nakamura, A., Yamaguchi, M., Takeo, K., and Shoun, H. (2002) J. Biol. Chem. 277, 1892–1896). We identified the Aspergillus nidulans genes involved in ammonia fermentation by analyzing fungal mutants. The results showed that assimilatory nitrate and nitrite reductases (the gene products of niaD and niiA) were essential for reducing nitrate and for anaerobic cell growth during ammonia fermentation. We also found that ethanol oxidation is coupled with nitrate reduction and catalyzed by alcohol dehydrogenase, coenzyme A (CoA)-acylating aldehyde dehydrogenase, and acetyl-CoA synthetase (Acs). This is similar to the mechanism suggested in F. oxysporum except A. nidulans uses Acs to produce ATP instead of the ADP-dependent acetate kinase of F. oxysporum. The production of Acs requires a functional facA gene that encodes Acs and that is involved in ethanol assimilation and other metabolic processes. We purified the gene product of facA (FacA) from the fungus to show that the fungus acetylates FacA on its lysine residue(s) specifically under conditions of ammonia fermentation to regulate its substrate affinity. Acetylated FacA had higher affinity for acetyl-CoA than for acetate, whereas non-acetylated FacA had more affinity for acetate. Thus, the acetylated variant of the FacA protein is responsible for ATP synthesis during fungal ammonia fermentation. These results showed that the fungus ferments ammonium via coupled dissimilatory and assimilatory mechanisms.


Biochemical Journal | 2006

Structural dissection of the reaction mechanism of cellobiose phosphorylase.

Masafumi Hidaka; Motomitsu Kitaoka; Kiyoshi Hayashi; Takayoshi Wakagi; Hirofumi Shoun; Shinya Fushinobu

Cellobiose phosphorylase, a member of the glycoside hydrolase family 94, catalyses the reversible phosphorolysis of cellobiose into alpha-D-glucose 1-phosphate and D-glucose with inversion of the anomeric configuration. The substrate specificity and reaction mechanism of cellobiose phosphorylase from Cellvibrio gilvus have been investigated in detail. We have determined the crystal structure of the glucose-sulphate and glucose-phosphate complexes of this enzyme at a maximal resolution of 2.0 A (1 A=0.1 nm). The phosphate ion is strongly held through several hydrogen bonds, and the configuration appears to be suitable for direct nucleophilic attack to an anomeric centre. Structural features around the sugar-donor and sugar-acceptor sites were consistent with the results of extensive kinetic studies. When we compared this structure with that of homologous chitobiose phosphorylase, we identified key residues for substrate discrimination between glucose and N-acetylglucosamine in both the sugar-donor and sugar-acceptor sites. We found that the active site pocket of cellobiose phosphorylase was covered by an additional loop, indicating that some conformational change is required upon substrate binding. Information on the three-dimensional structure of cellobiose phosphorylase will facilitate engineering of this enzyme, the application of which to practical oligosaccharide synthesis has already been established.


Journal of Inorganic Biochemistry | 2002

Isotope effects and intermediates in the reduction of NO by P450NOR

Andreas Daiber; Thomas Nauser; Naoki Takaya; Takashi Kudo; P. Weber; C. Hultschig; Hirofumi Shoun; Volker Ullrich

The mechanism of the heme-thiolate-dependent NADH-NO reductase (P450(NOR)) from Fusarium oxysporum was investigated by kinetic isotope effects including protio, [4S-2H]-, [4R-2H]-, [4,4(2)H(2)]-NADH and stopped-flow measurements. The respective kinetic isotope effects were measured at high NO concentrations and were found to be 1.7, 2.3 and 3.8 indicating a rate-limitation at the reduction step and a moderate stereoselectivity in binding of the cofactor NADH. In a different approach the kinetic isotope effects were determined directly for the reaction of the Fe(III)-NO complex with [4R-2H]- and [4S-2H]-NADH by stopped-flow spectroscopy. The resulting isotope effects were 2.7+/-0.4 for the R-form and 1.1+/-0.1 for the S-form. In addition the 444 nm intermediate could be chemically generated by addition of an ethanolic borohydride solution to the ferric-NO complex at -10 degrees C. In pulse radiolysis experiments a similar absorbing species could be observed when hydroxylamine radicals were generated in the presence of Fe (III) P450(NOR). Based on these results we postulate hydride transfer from NADH to the ferric P450-NO complex resulting in a ferric hydroxylamine-radical or ferryl hydroxylamine-complex and this step, as indicated by the kinetic isotope effects, to be rate-limiting at high concentrations of NO. However, at low concentrations of NO the decay of the 444 nm species becomes the rate-limiting step as envisaged by stopped-flow and optical kinetic measurements in a system in which NO was continuously generated. The last step in the catalytic cycle may proceed by a direct addition of the NO radical to the Fe-hydroxylamine complex or by electron transfer from the NO radical to the ferric-thiyl moiety in analogy to the postulated mechanisms of prostacyclin and thromboxane biosynthesis by the corresponding P450 enzymes. The latter process of electron transfer could then constitute a common step in all heme-thiolate catalyzed reactions.


Applied and Environmental Microbiology | 2009

Eukaryotic nirK Genes Encoding Copper-Containing Nitrite Reductase: Originating from the Protomitochondrion?

Sang-Wan Kim; Shinya Fushinobu; Shengmin Zhou; Takayoshi Wakagi; Hirofumi Shoun

ABSTRACT Although denitrification or nitrate respiration has been found among a few eukaryotes, its phylogenetic relationship with the bacterial system remains unclear because orthologous genes involved in the bacterial denitrification system were not identified in these eukaryotes. In this study, we isolated a gene from the denitrifying fungus Fusarium oxysporum that is homologous to the bacterial nirK gene responsible for encoding copper-containing nitrite reductase (NirK). Characterization of the gene and its recombinant protein showed that the fungal nirK gene is the first eukaryotic ortholog of the bacterial counterpart involved in denitrification. Additionally, recent genome analyses have revealed the occurrence of nirK homologs in many fungi and protozoa, although the denitrifying activity of these eukaryotes has never been examined. These eukaryotic homolog genes, together with the fungal nirK gene of F. oxysporum, are grouped in the same branch of the phylogenetic tree as the nirK genes of bacteria, archaea, and eukaryotes, implying that eukaryotic nirK and its homologs evolved from a single ancestor (possibly the protomitochondrion). These results show that the fungal denitrifying system has the same origin as its bacterial counterpart.


Glycobiology | 2008

Alternative strategy for converting an inverting glycoside hydrolase into a glycosynthase

Yuji Honda; Shinya Fushinobu; Masafumi Hidaka; Takayoshi Wakagi; Hirofumi Shoun; Hajime Taniguchi; Motomitsu Kitaoka

The tyrosine residue Y198 is known to support a nucleophilic water molecule with the general base residue, D263, in the reducing-end xylose-releasing exo-oligoxylanase (Rex). A mutation in the tyrosine residue changing it into phenylalanine caused a drastic decrease in the hydrolytic activity and a small increase in the F(-) releasing activity from alpha-xylobiosyl fluoride in the presence of xylose. In contrast, mutations at D263 resulted in the decreased F(-) releasing activity. As a result of the high F(-) releasing activity and low hydrolytic activity, Y198F of Rex accumulates a large amount of product during the glycosynthase reaction. We propose a novel method for producing a glycosynthase from an inverting glycoside hydrolase by mutating a residue that holds the nucleophilic water molecule with the general base residue while keeping the general base residue intact.

Collaboration


Dive into the Hirofumi Shoun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Motomitsu Kitaoka

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morio Miyahara

Tokyo University of Pharmacy and Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge