Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hirofumi Suemori is active.

Publication


Featured researches published by Hirofumi Suemori.


Immunity | 2000

Distinct and Essential Roles of Transcription Factors IRF-3 and IRF-7 in Response to Viruses for IFN-α/β Gene Induction

Mitsuharu Sato; Hirofumi Suemori; Naoki Hata; Masataka Asagiri; Kouetsu Ogasawara; Kazuki Nakao; Takeo Nakaya; Motoya Katsuki; Shigeru Noguchi; Nobuyuki Tanaka; Tadatsugu Taniguchi

Induction of the interferon (IFN)-alpha/beta gene transcription in virus-infected cells is an event central to innate immunity. Mice lacking the transcription factor IRF-3 are more vulnerable to virus infection. In embryonic fibroblasts, virus-induced IFN-alpha/beta gene expression levels are reduced and the spectrum of the IFN-alpha mRNA subspecies altered. Furthermore, cells additionally defective in IRF-7 expression totally fail to induce these genes in response to infections by any of the virus types tested. In these cells, a normal profile of IFN-alpha/beta mRNA induction can be achieved by coexpressing both IRF-3 and IRF-7. These results demonstrate the essential and distinct roles of thetwo factors, which together ensure the transcriptional efficiency and diversity of IFN-alpha/beta genes for the antiviral response.


Nature Biotechnology | 2007

Characterization of human embryonic stem cell lines by the International Stem Cell Initiative

Oluseun Adewumi; Behrouz Aflatoonian; Lars Ährlund-Richter; Michal Amit; Peter W. Andrews; Gemma Beighton; Paul Bello; Nissim Benvenisty; Lorraine S. Berry; Simon Bevan; Barak Blum; Justin Brooking; Kevin G. Chen; Andre Choo; Gary A. Churchill; Marie Corbel; Ivan Damjanov; John S Draper; Petr Dvorak; Katarina Emanuelsson; Roland A. Fleck; Angela Ford; Karin Gertow; Marina Gertsenstein; Paul J. Gokhale; Rebecca S. Hamilton; Alex Hampl; Lyn Healy; Outi Hovatta; Johan Hyllner

The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue-nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity

Hiroshi Kawasaki; Hirofumi Suemori; Kenji Mizuseki; Kiichi Watanabe; Fumi Urano; Hiroshi Ichinose; Masatoshi Haruta; Masayo Takahashi; Kanako Yoshikawa; Shin-Ichi Nishikawa; Norio Nakatsuji; Yoshiki Sasai

We previously identified a stromal cell-derived inducing activity (SDIA), which induces differentiation of neural cells, including midbrain tyrosine hydroxylase-positive (TH+) dopaminergic neurons, from mouse embryonic stem cells. We report here that SDIA induces efficient neural differentiation also in primate embryonic stem cells. Induced neurons contain TH+ neurons at a frequency of 35% and produce a significant amount of dopamine. Interestingly, differentiation of TH+ neurons from undifferentiated embryonic cells occurs much faster in vitro (10 days) than it does in the embryo (≈5 weeks). In addition, 8% of the colonies contain large patches of Pax6+-pigmented epithelium of the retina. The SDIA method provides an unlimited source of primate cells for the study of pathogenesis, drug development, and transplantation in degenerative diseases such as Parkinsons disease and retinitis pigmentosa.


Molecular and Cellular Biology | 2005

Octamer and Sox Elements Are Required for Transcriptional cis Regulation of Nanog Gene Expression

Takao Kuroda; Masako Tada; Hiroshi Kubota; Hironobu Kimura; Shin-ya Hatano; Hirofumi Suemori; Norio Nakatsuji; Takashi Tada

ABSTRACT The pluripotential cell-specific gene Nanog encodes a homeodomain-bearing transcription factor required for maintaining the undifferentiated state of stem cells. However, the molecular mechanisms that regulate Nanog gene expression are largely unknown. To address this important issue, we used luciferase assays to monitor the relative activities of deletion fragments from the 5′-flanking region of the gene. An adjacent pair of highly conserved Octamer- and Sox-binding sites was found to be essential for activating pluripotential state-specific gene expression. Furthermore, the 5′-end fragment encompassing the Octamer/Sox element was sufficient for inducing the proper expression of a green fluorescent protein reporter gene even in human embryonic stem (ES) cells. The potential of OCT4 and SOX2 to bind to this element was verified by electrophoretic mobility shift assays with extracts from F9 embryonal carcinoma cells and embryonic germ cells derived from embryonic day 12.5 embryos. However, in ES cell extracts, a complex of OCT4 with an undefined factor preferentially bound to the Octamer/Sox element. Thus, Nanog transcription may be regulated through an interaction between Oct4 and Sox2 or a novel pluripotential cell-specific Sox element-binding factor which is prominent in ES cells.


Journal of Clinical Investigation | 2005

Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model

Yasushi Takagi; Jun Takahashi; Hidemoto Saiki; Asuka Morizane; Takuya Hayashi; Yo Kishi; Hitoshi Fukuda; Yo Okamoto; Masaomi Koyanagi; Makoto Ideguchi; Hideki Hayashi; Takayuki Imazato; Hiroshi Kawasaki; Hirofumi Suemori; Shigeki Omachi; Hidehiko Iida; Nobuyuki Itoh; Norio Nakatsuji; Yoshiki Sasai; Nobuo Hashimoto

Parkinson disease (PD) is a neurodegenerative disorder characterized by loss of midbrain dopaminergic (DA) neurons. ES cells are currently the most promising donor cell source for cell-replacement therapy in PD. We previously described a strong neuralizing activity present on the surface of stromal cells, named stromal cell-derived inducing activity (SDIA). In this study, we generated neurospheres composed of neural progenitors from monkey ES cells, which are capable of producing large numbers of DA neurons. We demonstrated that FGF20, preferentially expressed in the substantia nigra, acts synergistically with FGF2 to increase the number of DA neurons in ES cell-derived neurospheres. We also analyzed the effect of transplantation of DA neurons generated from monkey ES cells into 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated (MPTP-treated) monkeys, a primate model for PD. Behavioral studies and functional imaging revealed that the transplanted cells functioned as DA neurons and attenuated MPTP-induced neurological symptoms.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells

Kenji Mizuseki; Tatsunori Sakamoto; Kiichi Watanabe; Keiko Muguruma; Makoto Ikeya; Ayaka Nishiyama; Akiko Arakawa; Hirofumi Suemori; Norio Nakatsuji; Hiroshi Kawasaki; Fujio Murakami; Yoshiki Sasai

To understand the range of competence of embryonic stem (ES) cell-derived neural precursors, we have examined in vitro differentiation of mouse and primate ES cells into the dorsal- (neural crest) and ventralmost (floor plate) cells of the neural axis. Stromal cell-derived inducing activity (SDIA; accumulated on PA6 stromal cells) induces cocultured ES cells to differentiate into rostral CNS tissues containing both ventral and dorsal cells. Although early exposure of SDIA-treated ES cells to bone morphogenetic protein (BMP)4 suppresses neural differentiation and promotes epidermogenesis, late BMP4 exposure after the fourth day of coculture causes differentiation of neural crest cells and dorsalmost CNS cells, with autonomic system and sensory lineages induced preferentially by high and low BMP4 concentrations, respectively. In contrast, Sonic hedgehog (Shh) suppresses differentiation of neural crest lineages and promotes that of ventral CNS tissues such as motor neurons. Notably, high concentrations of Shh efficiently promote differentiation of HNF3β+ floor plate cells with axonal guidance activities. Thus, SDIA-treated ES cells generate naïve precursors that have the competence of differentiating into the “full” dorsal–ventral range of neuroectodermal derivatives in response to patterning signals.


Developmental Dynamics | 2001

Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI

Hirofumi Suemori; Takashi Tada; Ryuzo Torii; Yoshihiko Hosoi; Kinji Kobayashi; Hiroshi Imahie; Yasushi Kondo; Akira Iritani; Norio Nakatsuji

Human embryonic stem (ES) cells are predicted to be a valuable source for producing ES‐derived therapeutic spare tissues to treat diseases by controlling their growth and differentiation. To understand the regulative mechanisms of their differentiation in vivo and in vitro, ES cells derived from nonhuman primates could be a powerful tool. We established four ES cell lines from cynomolgus monkey (Macaca fascicularis) blastocysts produced by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). The ES cells were characterized by the expression of specific markers such as alkaline phosphatase and stage‐specific embryonic antigen‐4. They were successfully maintained in an undifferentiated state and with a normal karyotype even after more than 6 months of culture. Pluripotential competence was confirmed by the formation of teratomas containing ectoderm‐, mesoderm‐, and endoderm‐ derivatives after subcutaneous injection into SCID mice. Differentiation to a variety of tissues was identified by immunohistochemical analyses using tissue‐specific antibodies. Therefore, we established pluripotent ES cell lines derived from monkeys that are widely used as experimental animals. These lines could be a useful resource for preclinical stem cell research, including allogenic transplantation into monkey models of disease.


Mechanisms of Development | 2005

Pluripotential competence of cells associated with Nanog activity.

Shin-ya Hatano; Masako Tada; Hironobu Kimura; Shinpei Yamaguchi; Tomohiro Kono; Toru Nakano; Hirofumi Suemori; Norio Nakatsuji; Takashi Tada

Nanog is a novel pluripotential cell-specific gene that plays a crucial role in maintaining the undifferentiated state of early postimplantation embryos and embryonic stem (ES) cells. We have explored the expression pattern and function of Nanog and a Nanog-homologue, Nanog-ps1.Nanog-ps1 was mapped on Chromosome 7 and shown to be a pseudogene. Immunocytochemical analysis in vivo showed that the NANOG protein was absent in unfertilized oocytes, and was detected in cells of morula-stage embryos, the inner cell mass of blastocysts and the epiblast of E6.5 and E7.5 embryos, but not in primordial germ cells of early postimplantation embryos. In monkey and human ES cells, NANOG expression was restricted to undifferentiated cells. Furthermore, reactivation of the somatic cell-derived Nanog was tightly linked with nuclear reprogramming induced by cell hybridization with ES cells and by nuclear transplantation into enucleated oocytes. Notably, mouse Nanog (+/-) ES cells, which produced approximately half the amount of NANOG produced by wild-type ES cells, readily differentiated to multi-lineage cells in culture medium including LIF. The labile undifferentiated state was fully rescued by constitutive expression of exogenous Nanog. Thus, the activity of Nanog is tightly correlated with an undifferentiated state of cells even in nuclear reprogrammed somatic cells. Nanog may function as a key regulator for sustaining pluripotency in a dose-dependent manner.


Development | 2008

Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/β-catenin, Activin/Nodal and BMP signaling

Tomoyuki Sumi; Norihiro Tsuneyoshi; Norio Nakatsuji; Hirofumi Suemori

The canonical Wnt/β-catenin signaling has remarkably diverse roles in embryonic development, stem cell self-renewal and cancer progression. Here, we show that stabilized expression of β-catenin perturbed human embryonic stem (hES)-cell self-renewal, such that up to 80% of the hES cells developed into the primitive streak (PS)/mesoderm progenitors, reminiscent of early mammalian embryogenesis. The formation of the PS/mesoderm progenitors essentially depended on the cooperative action of β-catenin together with Activin/Nodal and BMP signaling pathways. Intriguingly, blockade of BMP signaling completely abolished mesoderm generation, and induced a cell fate change towards the anterior PS progenitors. The PI3-kinase/Akt, but not MAPK, signaling pathway had a crucial role in the anterior PS specification, at least in part, by enhancing β-catenin stability. In addition, Activin/Nodal and Wnt/β-catenin signaling synergistically induced the generation and specification of the anterior PS/endoderm. Taken together, our findings clearly demonstrate that the orchestrated balance of Activin/Nodal and BMP signaling defines the cell fate of the nascent PS induced by canonical Wnt/β-catenin signaling in hES cells.


Nature Communications | 2012

Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells

Takamichi Miyazaki; Sugiko Futaki; Hirofumi Suemori; Yukimasa Taniguchi; Masashi Yamada; Miwa Kawasaki; Maria Hayashi; H. Kumagai; Norio Nakatsuji; Kiyotoshi Sekiguchi; Eihachiro Kawase

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have the potential to provide an infinite source of tissues for regenerative medicine. Although defined xeno-free media have been developed, culture conditions for reliable propagation of hESCs still require considerable improvement. Here we show that recombinant E8 fragments of laminin isoforms (LM-E8s), which are the minimum fragments conferring integrin-binding activity, promote greater adhesion of hESCs and hiPSCs than do Matrigel and intact laminin isoforms. Furthermore, LM-E8s sustain long-term self-renewal of hESCs and hiPSCs in defined xeno-free media with dissociated cell passaging. We successfully maintained three hESC and two hiPSC lines on LM-E8s in three defined media for 10 passages. hESCs maintained high level expression of pluripotency markers, had a normal karyotype after 30 passages and could differentiate into all three germ layers. This culture system allows robust proliferation of hESCs and hiPSCs for therapeutic applications.

Collaboration


Dive into the Hirofumi Suemori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isao Asaka

Mitsubishi Tanabe Pharma

View shared research outputs
Top Co-Authors

Avatar

Ryuzo Torii

Shiga University of Medical Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge