Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hirofumi Yamauchi is active.

Publication


Featured researches published by Hirofumi Yamauchi.


Experimental and Toxicologic Pathology | 2003

Impaired liver regeneration after partial hepatectomy in db/db mice.

Hirofumi Yamauchi; Koji Uetsuka; Taro Okada; Hiroyuki Nakayama; Kunio Doi

Fatty liver is the most common hepatic disorder in humans and supposed to be a cause of poor prognosis after liver transplantation and hepatic resection which could be resulted from impaired liver regeneration. This study was carried out to analyze the process of liver regeneration in db/db mice which show severe steatosis because of abnormal leptin receptor. We performed 70% partial hepatectomy (PH) on db/db mice and normal +m/+m mice, and then sacrificed the animals 1, 2, 3, 5, 7 and 10 days later. The liver samples were weighed and examined histologically or immunohistochemically. As a result, the liver mass restitution was significantly inhibited in db/db mice compared with +m/+m mice. The BrdU labelling index peaked at 2 days after PH in both strains, although the value was lower in db/db mice. After that, interestingly, it decreased to the control level at 5 days in +m/+m mice while the recovery was delayed in db/db mice. Similar sequence was also observed in the PCNA labelling index. In addition, the peak time of the mitosis index was 2 days and 5 days after PH in +m/+m mice and in db/db mice, respectively. Thus, although not significant, the proliferative response of hepatocytes to PH occurred somewhat more transient and sharply in +m/+m mice while it lasted somewhat longer in db/db mice. This suggests that db/db mice may be valuable as one of the animal models for the investigation of the effects of steatosis on the liver regeneration.


Neurotoxicology | 2008

Neurotoxicity of MPTP to migrating neuroblasts : Studies in acute and subacute mouse models of Parkinson's disease

Xi Jun He; Hirofumi Yamauchi; Koji Uetsuka; Hiroyuki Nakayama

The acute or subacute administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been widely used in C57BL/6 mice to develop models of Parkinsons disease (PD). The loss of dopaminergic neurons is suggested to be mediated by a mechanism of nonapoptotic cell death or by apoptosis. In recent years, the notion that the neurotoxicity of MPTP is restricted to dopaminergic neurons in the substantia nigra (SN) has been challenged. Here, we provide evidence of rapid cell death in the subventricular zone (SVZ) and rostral migratory stream (RMS) in the adult C57BL/6 mouse brain in response to acute or subacute treatment with MPTP. Significant terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) of fragmented DNA was observed at 24 h (or 1 day) after the last injection in the acute model or after the first injection in the subacute model. Ultrastructural analysis confirmed that dying cells displayed an apoptotic morphology. Using a double labeling method, we demonstrated that the phenotype of the cells undergoing apoptosis is that of migrating neuroblasts. This is further supported by evidence of a subsequent loss of migrating neuroblasts. The results raise the possibility that migrating neuroblasts in the SVZ and RMS may be more vulnerable to MPTP than nigrostriatal dopaminergic neurons in the SN, and the death of migrating neuroblasts may be a primary event in the mouse model of PD. Furthermore, our data suggests that the death and subsequent loss of migrating neuroblasts in the acute or subacute model probably lead to a decreased potential for neurogenesis to some extent.


Journal of Neuropathology and Experimental Neurology | 2006

Evidence of apoptosis in the subventricular zone and rostral migratory stream in the MPTP mouse model of Parkinson disease.

Xi Jun He; Hiroyuki Nakayama; Mei Dong; Hirofumi Yamauchi; Masaki Ueno; Koji Uetsuka; Kunio Doi

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to create animal models of Parkinson disease. There is conflicting evidence on the occurrence of apoptosis induced by MPTP in the mouse substantia nigra pars compacta. We demonstrated that a single acute injection of MPTP induced apoptosis in the subventricular zone (SVZ) and rostral migratory stream (RMS) in the adult C57BL/6 mouse brain. The number of TUNEL-positive cells peaked at 24 hours after injection and decreased thereafter, paralleling the change in the number of cleaved caspase-3-positive cells after MPTP injection. Results of immunohistochemistry and ultrastructural analyses indicated that the majority of apoptotic cells in the SVZ and RMS were migrating neuroblasts (type A cells), whereas a few were astrocytes (type B cells). No apoptosis occurred in transit-amplifying progenitors (type C cells). The decrease in A cell numbers was most marked on day 2 and lasted to day 8 after the administration. A rapid and transient phagocytosis of apoptotic cells by microglial cells was demonstrated to parallel the MPTP-induced apoptosis. The present findings provide new insight into the extensive neurotoxicity of MPTP and may be valuable in reevaluating the MPTP mouse model of Parkinson disease.


Neurobiology of Disease | 2005

Ethylnitrosourea induces neural progenitor cell apoptosis after S-phase accumulation in a p53-dependent manner.

Kei-ichi Katayama; Masaki Ueno; Hirofumi Yamauchi; Takayuki Nagata; Hiroyuki Nakayama; Kunio Doi

Neural progenitor cells populate the ventricular zone of the fetal central nervous system. In this study, immediately after the administration of ethylnitrosourea (ENU), an alkylating agent, an accumulation of neural progenitor cells in the S phase was observed. This event was caused by the inhibition or arrest of DNA replication rather than acceleration of the G1/S transition. Soon after this accumulation reached its peak, the number of cells in the G2/M phase decreased and the apoptotic cell count increased. In p53-deficient mice, both ENU-induced apoptosis and S-phase accumulation were almost completely abrogated. These findings indicate that ENU inhibits or arrests DNA replication in neural progenitor cells during the S phase and then evokes apoptosis before the cells enter the G2 phase. Furthermore, these data also demonstrate that both ENU-induced apoptosis and cell cycle perturbation in the S phase require p53.


Experimental Neurology | 2006

Cell cycle and cell death regulation of neural progenitor cells in the 5-azacytidine (5AzC)-treated developing fetal brain

Masaki Ueno; Kei-ichi Katayama; Hirofumi Yamauchi; Hiroyuki Nakayama; Kunio Doi

In the developing brain, neural progenitor cells are susceptible to many extrinsic stresses, including DNA damage. We treated pregnant rats with 5-azacytidine (5AzC), a DNA demethylating and damaging agent, to investigate the cellular responses of the fetal brain, focusing on the regulation of proliferation and cell death. 5AzC first induced the accumulation of cells in abnormal mitosis, G2-phase accumulation, and then apoptosis of the neural progenitor cells. Most of the apoptotic cells were in G1 phase. Cell cycle transition studies suggested that G2/M progression was blocked, after which the cells moved to G1 phase or underwent apoptosis. p53, a key factor for response to DNA damage, and some of its target genes showed increased expression in Western blot and DNA microarray analyses. In 5AzC-treated fetal brains of p53-deficient mice, apoptosis did not occur, although G2/M accumulation was induced. These results suggest that, in the developing brain, apoptosis is p53-dependent but that another mechanism governs the G2/M checkpoint. The G2/M regulator, Cdc2, was activated by dephosphorylation through G2/M accumulation, suggesting accelerated entry into mitosis leading to accumulation of cells showing abnormal mitosis. Furthermore, some cells may have died due to mitotic catastrophe. Throughout brain development, various cell cycle and cell death regulation mechanisms provide neural progenitor cells with options for defense from DNA damage.


Biology of Reproduction | 2004

Involvement of p53 in 1-β-d-Arabinofuranosylcytosine-Induced Trophoblastic Cell Apoptosis and Impaired Proliferation in Rat Placenta

Hirofumi Yamauchi; Kei-ichi Katayama; Masaki Ueno; Koji Uetsuka; Hiroyuki Nakayama; Kunio Doi

Abstract 1-β-d-Arabinofuranosylcytosine (Ara-C), a DNA-damaging agent, severely inhibits fetal growth and has teratogenicity. Recently, we reported that Ara-C also causes placental growth retardation and increases placental apoptosis. The aim of the present study is to elucidate the mechanisms of placental injury induced by genotoxic stress and involvement of p53, which mediates apoptosis and cell-cycle arrest after DNA damage. We injected Ara-C into pregnant rats on Day 13 of gestation and examined the placentas from 1 to 48 h after the administration. Terminal deoxynucleotidyltransferase-mediated dUTP end-labeling (TUNEL) revealed that the apoptosis of trophoblastic cells in the placental labyrinth zone increased from 3 h after the treatment and peaked at 6 h before returning to control levels at 48 h. An increase in cleaved caspase-3 immunoreactivity was also detected at 6 h. Proliferative activity as measured by immunohistochemistry for topoisomerase IIα and by mitotic index significantly decreased after the treatment in the labyrinth zone. Immunoreactivity for p53 protein in the placental labyrinth zone was remarkably enhanced and peaked at 3 h after treatment, although no increase in p53 mRNA expression was detected with a reverse transcription- polymerase chain reaction. Regarding p53 target genes, p21, cyclinG1, and fas mRNA levels increased significantly and peaked at around 9 h after the treatment. These results indicate that Ara-C would induce apoptosis and impair cell proliferation in the placental labyrinth zone, and p53 and its transcriptional target genes may play an important role in the pathogenesis of the Ara-C-induced placental toxicity.


Apoptosis | 2007

Essential role of p53 in trophoblastic apoptosis induced in the developing rodent placenta by treatment with a DNA-damaging agent

Hirofumi Yamauchi; Kei-ichi Katayama; Masaki Ueno; Xi Jun He; Takashi Mikami; Koji Uetsuka; Kunio Doi; Hiroyuki Nakayama

Placental apoptosis plays important roles in both normal morphogenesis and pathogenesis. We previously reported that administration of cytosine arabinoside (Ara-C), a DNA-damaging agent, to pregnant rats induced apoptosis of trophoblasts in the placental labyrinth zone. Our aim here was to clarify the molecular pathway of DNA damage induced-trophoblastic apoptosis. We found the accumulation and phosphorylation of p53 protein, a tumor suppressor that mediates apoptosis under various cellular stresses, in Ara-C-treated rat placentas. Expression of the mRNAs of downstream targets of p53 was upregulated, suggesting that p53 exerts its function as a transcription factor. We also observed release of mitochondrial cytochrome c and activation of caspase-9, hallmarks of the intrinsic apoptotic pathway. Phosphorylation of Chk1 and H2A.X, target substrates of DNA damage transducers, was detected immediately after Ara-C treatment, suggesting activation of DNA damage cascades to phosphorylate p53. Ara-C-induced trophoblastic apoptosis was almost completely abrogated in placentas of Trp53 (coding p53)-deficient mice, whereas the levels of physiological apoptosis in trophoblasts were similar among wild-type and Trp53-deficient mice. These results indicate that p53 is essential for DNA damage-induced trophoblastic apoptosis and suggest that the mechanisms that regulate the damage-induced apoptosis differ from those that regulate physiological apoptosis.


Neurotoxicology and Teratology | 2009

6-Mercaptopurine (6-MP) induces cell cycle arrest and apoptosis of neural progenitor cells in the developing fetal rat brain.

Hiroyuki Kanemitsu; Hirofumi Yamauchi; M. Komatsu; S. Yamamoto; S. Okazaki; Kazuyuki Uchida; Hiroyuki Nakayama

6-Mercaptopurine (6-MP), an analogue of hypoxanthine, is used in the therapy of acute lymphoblastic leukemia and causes fetal neurotoxicity. To clarify the mechanisms of 6-MP-induced fetal neurotoxicity leading to the cell cycle arrest and apoptosis of neural progenitor cells, pregnant rats were treated with 50 mg/kg 6-MP on embryonic day (E) 13, and the fetal telencephalons were examined at 12 to 72 h (h) after treatment. Flow-cytometric analysis confirmed an accumulation of cells at G2/M, S, and sub-G1 (apoptotic cells) phases from 24 to 72 h. The number of phosphorylated histone H3-positive cells (mitotic cells) decreased from 36 to 72 h, and the phosphorylated (active) form of p53 protein, which is a mediator of apoptosis and cell cycle arrest, increased from 24 to 48 h. An executor of p53-mediated cell cycle arrest, p21, showed intense overexpression at both the mRNA and protein levels from 24 to 72 h. Cdc25A protein, which is needed for the progression of S phase, decreased at 36 and 48 h. In addition, phosphorylated cdc2 protein, which is an inactive form of cdc2 necessary for G2/M progression, increased from 24 to 48 h. These results suggest that 6-MP induced G2/M arrest, delayed S-phase progression, and finally induced apoptosis of neural progenitor cells mediated by p53 in the fetal rat telencephalon.


Neurotoxicology and Teratology | 2009

6-mercaptopurine (6-MP) induces p53-mediated apoptosis of neural progenitor cells in the developing fetal rodent brain.

Hiroyuki Kanemitsu; Hirofumi Yamauchi; M. Komatsu; S. Yamamoto; S. Okazaki; Kazuyuki Uchida; Hiroyuki Nakayama

6-mercaptopurine (6-MP), a DNA-damaging agent, induces apoptosis of neural progenitor cells, and causes malformation in the fetal brain. The aim of the present study is to clarify the molecular pathway of 6-MP-induced apoptosis of neural progenitor cells in the fetal telencephalon of rats and mice. p53 protein is activated by DNA damage and induces apoptosis through either the intrinsic pathway involving the mitochondria or the extrinsic pathway triggered by death receptors. In this study, the expression of puma and cleaved caspase-9 proteins, which are specific intrinsic pathway factors, increased in the rat telencephalon after 6-MP treatment. 6-MP-induced apoptosis of neural progenitor cells was completely absent in p53-deficient mice. On the other hand, the expression of Fas protein, an extrinsic pathway factor, did not change throughout the experimental period in the rat telencephalon treated with 6-MP. The number of apoptotic neural progenitor cells was similar among Fas-mutated lpr/lpr and wild-type mice, suggesting that the Fas pathway does not play a significant role in 6-MP-induced apoptosis of neural progenitor cells. These results may suggest that the p53-mediated intrinsic pathway is essential for 6-MP-induced apoptosis of neural progenitor cells in the developing telencephalon of rats and mice.


Experimental and Toxicologic Pathology | 2002

Ethylnitrosourea-induced apoptosis in primordial germ cells of the rat fetus.

Kei-ichi Katayama; Masaki Ueno; Hirofumi Yamauchi; Hiroyuki Nakayama; Kunio Doi

Ethylnitrosourea (ENU) is a simple alkylating agent. It induces gene mutations in fetal primordial germ cells (PGCs), and a high incidence of congenital malformations is also found in the offspring of male mice treated with ENU at the embryonic stage. It is also reported that decreases in the fertility rate and weights of the testis and ovary were found in the offspring from dams treated with ENU. In this study, we analyzed the occurrence of apoptotic cell death and the expression of p53 protein which is thought to play an important role in the DNA damage-induced apoptosis after administration of ENU to pregnant rats on day 13 of gestation to obtain a clue for clarifying the toxic effect of ENU on PGCs. Apoptotic cells increased in PGCs in fetal gonads from 3 h after treatment. The number of apoptotic PGCs peaked at 6 h and gradually decreased towards 24 h after treatment. On the other hand, p53-positive PGCs increased from I h after treatment, prior to the induction of apoptosis. The number of p53-positive PGCs peaked at 3 h and returned to the control level at 24 h after treatment. These results suggest that ENU induces apoptosis in rat fetal PGCs immediately after its administration to dams and excess cell death by apoptosis may have a close relation to the later occurrence of decreases in the fertility rate and gonadal weight. Moreover, a possible involvement of p53 is suggested in the ENU-induced apoptosis in PGCs.

Collaboration


Dive into the Hirofumi Yamauchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge