Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hirokazu Miki is active.

Publication


Featured researches published by Hirokazu Miki.


Theranostics | 2013

Superparamagnetic Nanoparticle Clusters for Cancer Theranostics Combining Magnetic Resonance Imaging and Hyperthermia Treatment

Koichiro Hayashi; Michihiro Nakamura; Wataru Sakamoto; Toshinobu Yogo; Hirokazu Miki; Shuji Ozaki; Masahiro Abe; Toshio Matsumoto; Kazunori Ishimura

Superparamagnetic nanoparticles (SPIONs) could enable cancer theranostics if magnetic resonance imaging (MRI) and magnetic hyperthermia treatment (MHT) were combined. However, the particle size of SPIONs is smaller than the pores of fenestrated capillaries in normal tissues because superparamagnetism is expressed only at a particle size <10 nm. Therefore, SPIONs leak from the capillaries of normal tissues, resulting in low accumulation in tumors. Furthermore, MHT studies have been conducted in an impractical way: direct injection of magnetic materials into tumor and application of hazardous alternating current (AC) magnetic fields. To accomplish effective enhancement of MRI contrast agents in tumors and inhibition of tumor growth by MHT with intravenous injection and a safe AC magnetic field, we clustered SPIONs not only to prevent their leakage from fenestrated capillaries in normal tissues, but also for increasing their relaxivity and the specific absorption rate. We modified the clusters with folic acid (FA) and polyethylene glycol (PEG) to promote their accumulation in tumors. SPION clustering and cluster modification with FA and PEG were achieved simultaneously via the thiol-ene click reaction. Twenty-four hours after intravenous injection of FA- and PEG-modified SPION nanoclusters (FA-PEG-SPION NCs), they accumulated locally in cancer (not necrotic) tissues within the tumor and enhanced the MRI contrast. Furthermore, 24 h after intravenous injection of the NCs, the mice were placed in an AC magnetic field with H = 8 kA/m and f = 230 kHz (Hf = 1.8×109 A/m∙s) for 20 min. The tumors of the mice underwent local heating by application of an AC magnetic field. The temperature of the tumor was higher than the surrounding tissues by ≈6°C at 20 min after treatment. Thirty-five days after treatment, the tumor volume of treated mice was one-tenth that of the control mice. Furthermore, the treated mice were alive after 12 weeks; control mice died up to 8 weeks after treatment.


PLOS ONE | 2010

TGF-β Inhibition Restores Terminal Osteoblast Differentiation to Suppress Myeloma Growth

Kyoko Takeuchi; Masahiro Abe; Masahiro Hiasa; Asuka Oda; Hiroe Amou; Shinsuke Kido; Takeshi Harada; Osamu Tanaka; Hirokazu Miki; Shingen Nakamura; Ayako Nakano; Kumiko Kagawa; Kenichiro Yata; Shuji Ozaki; Toshio Matsumoto

Background Multiple myeloma (MM) expands almost exclusively in the bone marrow and generates devastating bone lesions, in which bone formation is impaired and osteoclastic bone resorption is enhanced. TGF-β, a potent inhibitor of terminal osteoblast (OB) differentiation, is abundantly deposited in the bone matrix, and released and activated by the enhanced bone resorption in MM. The present study was therefore undertaken to clarify the role of TGF-β and its inhibition in bone formation and tumor growth in MM. Methodology/Principal Findings TGF-β suppressed OB differentiation from bone marrow stromal cells and MC3T3-E1 preosteoblastic cells, and also inhibited adipogenesis from C3H10T1/2 immature mesenchymal cells, suggesting differentiation arrest by TGF-β. Inhibitors for a TGF-β type I receptor kinase, SB431542 and Ki26894, potently enhanced OB differentiation from bone marrow stromal cells as well as MC3T3-E1 cells. The TGF-β inhibition was able to restore OB differentiation suppressed by MM cell conditioned medium as well as bone marrow plasma from MM patients. Interestingly, TGF-β inhibition expedited OB differentiation in parallel with suppression of MM cell growth. The anti-MM activity was elaborated exclusively by terminally differentiated OBs, which potentiated the cytotoxic effects of melphalan and dexamethasone on MM cells. Furthermore, TGF-β inhibition was able to suppress MM cell growth within the bone marrow while preventing bone destruction in MM-bearing animal models. Conclusions/Significance The present study demonstrates that TGF-β inhibition releases stromal cells from their differentiation arrest by MM and facilitates the formation of terminally differentiated OBs, and that terminally differentiated OBs inhibit MM cell growth and survival and enhance the susceptibility of MM cells to anti-MM agents to overcome the drug resistance mediated by stromal cells. Therefore, TGF-β appears to be an important therapeutic target in MM bone lesions.


Theranostics | 2014

Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release.

Koichiro Hayashi; Michihiro Nakamura; Hirokazu Miki; Shuji Ozaki; Masahiro Abe; Toshio Matsumoto; Wataru Sakamoto; Toshinobu Yogo; Kazunori Ishimura

We report the synthesis of smart nanoparticles (NPs) that generate heat in response to an alternating current magnetic field (ACMF) and that sequentially release an anticancer drug (doxorubicin, DOX). We further study the in vivo therapeutic efficacy of the combination of magnetic hyperthermia (MHT) and chemotherapy using the smart NPs for the treatment of multiple myeloma. The smart NPs are composed of a polymer with a glass-transition temperature (Tg) of 44°C, which contains clustered Fe3O4 NPs and DOX. The clustered Fe3O4 NPs produce heat when the ACMF is applied and rise above 44°C, which softens the polymer phase and leads to the release of DOX. The combination of MHT and chemotherapy using the smart NPs destroys cancer cells in the entire tumor and achieves a complete cure in one treatment without the recurrence of malignancy. Furthermore, the smart NPs have no significant toxicity.


Leukemia | 2011

The serine/threonine kinase Pim-2 is a novel anti-apoptotic mediator in myeloma cells

Jin Asano; Ayako Nakano; Asuka Oda; Hiroe Amou; Masahiro Hiasa; Kyoko Takeuchi; Hirokazu Miki; Shingen Nakamura; Takeshi Harada; Shiro Fujii; Kumiko Kagawa; Itsuro Endo; Kenichiro Yata; Akira Sakai; Shuji Ozaki; Toshio Matsumoto; Masahiro Abe

Bone marrow stromal cells (BMSCs) and osteoclasts (OCs) confer multiple myeloma (MM) cell survival through elaborating factors. We demonstrate herein that IL-6 and TNF family cytokines, TNFα, BAFF and APRIL, but not IGF-1 cooperatively enhance the expression of the serine/threonine kinase Pim-2 in MM cells. BMSCs and OCs upregulate Pim-2 expression in MM cells largely via the IL-6/STAT3 and NF-κB pathway, respectively. Pim-2 short interfering RNA reduces MM cell viability in cocultures with BMSCs or OCs. Thus, upregulation of Pim-2 appears to be a novel anti-apoptotic mechanism for MM cell survival. Interestingly, the mammalian target of rapamycin inhibitor rapamycin further suppresses the MM cell viability in combination with the Pim-2 silencing. The Pim inhibitor (Z)-5-(4-propoxybenzylidene) thiazolidine-2, 4-dione and the PI3K inhibitor LY294002 cooperatively enhance MM cell death. The Pim inhibitor suppresses 4E-BP1 phosphorylation along with the reduction of Mcl-1 and c-Myc. Pim-2 may therefore become a new target for MM treatment.


PLOS ONE | 2011

Glycolysis Inhibition Inactivates ABC Transporters to Restore Drug Sensitivity in Malignant Cells

Ayako Nakano; Daisuke Tsuji; Hirokazu Miki; Qu Cui; Salah Mohamed El Sayed; Akishige Ikegame; Asuka Oda; Hiroe Amou; Shingen Nakamura; Takeshi Harada; Shiro Fujii; Kumiko Kagawa; Kyoko Takeuchi; Akira Sakai; Shuji Ozaki; Kazuma Okano; Takahiro Nakamura; Kohji Itoh; Toshio Matsumoto; Masahiro Abe

Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC) transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA) suppressed ATP production in malignant cells, and restored the retention of daunorubicin or mitoxantrone in ABC transporter-expressing, RPMI8226 (ABCG2), KG-1 (ABCB1) and HepG2 cells (ABCB1 and ABCG2). Interestingly, although side population (SP) cells isolated from RPMI8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway, 3BrPA abolished Hoechst 33342 exclusion in SP cells. 3BrPA also disrupted clonogenic capacity in malignant cell lines including RPMI8226, KG-1, and HepG2. Furthermore, 3BrPA restored cytotoxic effects of daunorubicin and doxorubicin on KG-1 and RPMI8226 cells, and markedly suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI8226-implanted mice. These results collectively suggest that the inhibition of glycolysis is able to overcome drug resistance in ABC transporter-expressing malignant cells through the inactivation of ABC transporters and impairment of SP cells with enhanced glycolysis as well as clonogenic cells.


International Journal of Hematology | 2007

Therapy with bortezomib plus dexamethasone induces osteoblast activation in responsive patients with multiple myeloma.

Shuji Ozaki; Osamu Tanaka; Shiro Fujii; Yuri Shigekiyo; Hirokazu Miki; Masahito Choraku; Kumiko Kagawa; Jin Asano; Kyoko Takeuchi; Kenichi Kitazoe; Toshihiro Hashimoto; Masahiro Abe; Toshio Matsumoto

Bortezomib is a novel proteasome inhibitor that has shown marked antitumor effects in patients with multiple myeloma (MM). We evaluated the feasibility and efficacy of bortezomib plus dexamethasone (BD) therapy and assessed bone metabolism in relapsed or refractory MM. Fourteen patients received 1.3 mg/m2 bortezomib on days 1, 4, 8, and 11 along with 20 mg/dose of dexamethasone on days 1, 2, 4, 5, 8, 9, 11, and 12 in a 21-day cycle. After 1 to 3 cycles of BD therapy, 9 patients (64%) achieved an objective response (5 very good partial responses and 4 partial responses). Notably, a rapid increase in the serum concentration of alkaline phosphatase (ALP) was observed in 6 of the treatment-responsive patients. Moreover, serum levels of bone-formation markers (bone-specific ALP and osteocalcin) significantly increased in 5 and 2 responsive patients, respectively. Radiographic examination showed improvement in bone lesions, suggesting that BD therapy induces osteoblast activation in responders. Adverse events included thrombocytopenia of grades 1 to 3, peripheral neuropathy of grades 1 to 2, and grade 3 ileus and were transient and manageable. Although severe lung injury has been reported among Japanese patients treated with bortezomib, no pulmonary complications were observed during BD therapy. Our results suggest that BD therapy is a safe and promising therapeutic approach for Japanese patients with MM.


Leukemia | 2012

Small molecule antibody targeting HLA class I inhibits myeloma cancer stem cells by repressing pluripotency-associated transcription factors

Akishige Ikegame; Shuji Ozaki; Daisuke Tsuji; Takeshi Harada; Shiro Fujii; Shingen Nakamura; Hirokazu Miki; Ayako Nakano; Kumiko Kagawa; Kyoko Takeuchi; Masahiro Abe; Keiichiro Watanabe; Masahiro Hiasa; N Kimura; Yusaku Kikuchi; A Sakamoto; K Habu; M Endo; Kohji Itoh; Hisafumi Yamada-Okabe; Toshio Matsumoto

Cancer stem cells have been proposed to be responsible for tumorigenesis and recurrence in various neoplastic diseases, including multiple myeloma (MM). We have previously reported that MM cells specifically express HLA class I at high levels and that single-chain Fv diabody against this molecule markedly induces MM cell death. Here we investigated the effect of a new diabody (C3B3) on cancer stem cell-like side population (SP) cells. SP fraction of MM cells highly expressed ABCG2 and exhibited resistance to chemotherapeutic agents; however, C3B3 induced cytotoxicity in both SP cells and main population (MP) cells to a similar extent. Moreover, C3B3 suppressed colony formation and tumorigenesis of SP cells in vitro and in vivo. Crosslinking of HLA class I by C3B3 mediated disruption of lipid rafts and actin aggregation, which led to inhibition of gene expression of β-catenin and pluripotency-associated transcription factors such as Sox2, Oct3/4 and Nanog. Conversely, knockdown of Sox2 and Oct3/4 mRNA reduced the proportion of SP cells, suggesting that these factors are essential in maintenance of SP fraction in MM cells. Thus, our findings reveal that immunotherapeutic approach by engineered antibodies can overcome drug resistance, and provide a new basis for development of cancer stem cell-targeted therapy.


Journal of Bioenergetics and Biomembranes | 2012

Up-regulation of hexokinaseII in myeloma cells: targeting myeloma cells with 3-bromopyruvate.

Ayako Nakano; Hirokazu Miki; Shingen Nakamura; Takeshi Harada; Asuka Oda; Hiroe Amou; Shiro Fujii; Kumiko Kagawa; Kyoko Takeuchi; Shuji Ozaki; Toshio Matsumoto; Masahiro Abe

AbstractsHexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. However, HKII levels and its roles in ATP production and ATP-dependent cellular process have not been well studied in hematopoietic malignant cells including multiple myeloma (MM) cells. We demonstrate herein that HKII is constitutively over-expressed in MM cells. 3-bromopyruvate (3BrPA), an inhibitor of HKII, promptly and substantially suppresses ATP production and induces cell death in MM cells. Interestingly, cocultures with osteoclasts (OCs) but not bone marrow stromal cells (BMSCs) enhanced the phosphorylation of Akt along with an increase in HKII levels and lactate production in MM cells. The enhancement of HKII levels and lactate production in MM cells by OCs were mostly abrogated by the PI3K inhibitor LY294002, suggesting activation of glycolysis in MM cells by OCs via the PI3K-Akt-HKII pathway. Although BMSCs and OCs stimulate MM cell growth and survival, 3BrPA induces cell death in MM cells even in cocultures with OCs as well as BMSCs. Furthermore, 3BrPA was able to diminish ATP-dependent ABC transporter activity to restore drug retention in MM cells in the presence of OCs. These results may underpin possible clinical application of 3BrPA in patients with MM.


International Journal of Hematology | 2011

Delayed treatment with vitamin C and N-acetyl-l-cysteine protects Schwann cells without compromising the anti-myeloma activity of bortezomib

Ayako Nakano; Masahiro Abe; Asuka Oda; Hiroe Amou; Masahiro Hiasa; Shingen Nakamura; Hirokazu Miki; Takeshi Harada; Shirou Fujii; Kumiko Kagawa; Kyoko Takeuchi; Takashi Watanabe; Shuji Ozaki; Toshio Matsumoto

Bortezomib-induced peripheral neuropathy (BIPN) emerges as a disabling adverse effect. As rat models for BIPN have demonstrated damage in nerve Schwann cells, we screened for cytoprotective agents to devise a method of rescuing Schwann cells from the cytotoxic effects of bortezomib without compromising its anti-myeloma effects. Schwann cells underwent macroautophagy along with cytoplasmic inclusion body and vacuole formation, and appeared much less susceptible to bortezomib-induced cytotoxicity than did myeloma cells. Vitamin C or N-acetyl-l-cysteine (NAC) achieved near-complete rescue of Schwann cells treated with bortezomib at 30 nM or less, and these agents in combination are able to cooperatively inhibit the morphological changes and the cytotoxicity in Schwann cells with higher doses of bortezomib. The delayed addition of vitamin C and/or NAC after the exposure to bortezomib alleviated the cytotoxicity in Schwann cells but not myeloma cells. These results suggest that delayed treatment with these agents may be instrumental in prophylaxis of BIPN.


Leukemia | 2015

Pim-2 kinase is an important target of treatment for tumor progression and bone loss in myeloma.

Masahiro Hiasa; Jumpei Teramachi; Asuka Oda; Ryota Amachi; Takeshi Harada; Shingen Nakamura; Hirokazu Miki; Shiro Fujii; Kumiko Kagawa; Keiichiro Watanabe; Itsuro Endo; Yoshiaki Kuroda; Toshiyuki Yoneda; Daisuke Tsuji; Michiyasu Nakao; Eiji Tanaka; Kenichi Hamada; Shigeki Sano; Kohji Itoh; Toshio Matsumoto; Masahiro Abe

Pim-2 kinase is overexpressed in multiple myeloma (MM) cells to enhance their growth and survival, and regarded as a novel therapeutic target in MM. However, the impact of Pim-2 inhibition on bone disease in MM remains unknown. We demonstrated here that Pim-2 expression was also upregulated in bone marrow stromal cells and MC3T3-E1 preosteoblastic cells in the presence of cytokines known as the inhibitors of osteoblastogenesis in MM, including interleukin-3 (IL-3), IL-7, tumor necrosis factor-α, transforming growth factor-β (TGF-β) and activin A, as well as MM cell conditioned media. The enforced expression of Pim-2 abrogated in vitro osteoblastogenesis by BMP-2, which suggested Pim-2 as a negative regulator for osteoblastogenesis. Treatment with Pim-2 short-interference RNA as well as the Pim inhibitor SMI-16a successfully restored osteoblastogenesis suppressed by all the above inhibitory factors and MM cells. The SMI-16a treatment potentiated BMP-2-mediated anabolic signaling while suppressing TGF-β signaling. Furthermore, treatment with the newly synthesized thiazolidine-2,4-dione congener, 12a-OH, as well as its prototypic SMI-16a effectively prevented bone destruction while suppressing MM tumor growth in MM animal models. Thus, Pim-2 may have a pivotal role in tumor progression and bone loss in MM, and Pim-2 inhibition may become an important therapeutic strategy to target the MM cell–bone marrow interaction.

Collaboration


Dive into the Hirokazu Miki's collaboration.

Top Co-Authors

Avatar

Masahiro Abe

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiro Fujii

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar

Shuji Ozaki

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asuka Oda

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge