Hirokazu Oka
Ibaraki University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hirokazu Oka.
Semigroup Forum | 1996
Hirokazu Oka
AbstractWe consider the linear Volterra equation
Publicationes Mathematicae Debrecen | 2017
Sin-Ei Takahasi; Hiroyuki Takagi; Takeshi Miura; Hirokazu Oka
Nonlinear Analysis-theory Methods & Applications | 1997
Hirokazu Oka; Naoki Tanaka
{\text{(VE;}}A{\text{,}}a{\text{)}}u{\text{(}}t{\text{) = }}x {\text{ + }}\int_{\text{0}}^{\text{t}} { a{\text{(}}t{\text{ - }}s{\text{)}}Au{\text{(}}s{\text{)}}ds {\text{for }}t \geqslant {\text{0}}{\text{.}}}
Mediterranean Journal of Mathematics | 2009
Osamu Hatori; Kazumi Hino; Takeshi Miura; Hirokazu Oka
Journal of Mathematical Inequalities | 2007
Takeshi Miura; Hirokazu Oka; Sin-Ei Takahasi; Norio Niwa
HereA is an unbounded closed linear operator in a Banach spaceX anda is a scalar valued function. We study the theory of solution families which are not necessarily exponentially bounded and also, as their generalizations, consider the notion ofn-times integrated solution families for (VE;A, a). These families are characterized in terms of the associated Volterra integral equation
Banach Journal of Mathematical Analysis | 2007
Takeshi Miura; Hirokazu Oka; Go Hirasawa; Sin-Ei Takahasi
Tokyo Journal of Mathematics | 2009
Osamu Hatori; Takeshi Miura; Hirokazu Oka; Hiroyuki Takagi
{\text{(VE;}}A{\text{,}}a{\text{)}}_n u{\text{(}}t{\text{) = }}\frac{{t^n }}{{n!}}x {\text{ + }}A{\text{ }}\int_{\text{0}}^{\text{t}} { a{\text{(}}t{\text{ - }}s{\text{)}}u{\text{(}}s{\text{)}}ds {\text{for }}t \geqslant {\text{0}}{\text{.}}}
Tokyo Journal of Mathematics | 1993
Hirokazu Oka
International Mathematical Forum | 2007
Osamu Hatori; Takeshi Miura; Hirokazu Oka; Hiroyuki Takagi
The results are applied to additive and multiplicative perturbation theorems and adjoint problems.
Differential and Integral Equations | 1995
Hirokazu Oka; Naoki Tanaka
We characterize the cancellative and continuous semigroup operations on the real field which are distributed by the ordinary multiplication or addition.