Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroki Bochimoto is active.

Publication


Featured researches published by Hiroki Bochimoto.


Biochimica et Biophysica Acta | 2013

Focal adhesion kinase regulates intestinal epithelial barrier function via redistribution of tight junction

Yanju Ma; Shingo Semba; Rafiqul Islam Khan; Hiroki Bochimoto; T. Watanabe; Mikihiro Fujiya; Yutaka Kohgo; Yunpeng Liu; Takanobu Taniguchi

Disruption of epithelial barrier function was identified as one of the pathologic mechanisms in inflammatory bowel diseases (IBD). Epithelial barrier consists of various intercellular junctions, in which the tight junction (TJ) is an important component. However, the regulatory mechanism of tight junction is still not clear. Here we examined the role of focal adhesion kinase (FAK) in the epithelial barrier function on Caco-2 monolayers using a specific FAK inhibitor, PF-573, 228 (PF-228). We found that the decrease of transepithelial resistance and the increase of paracellular permeability were accompanied with the inhibition of autophosphorylation of FAK by PF-228 treatment. In addition, PF-228 inhibited the FAK phosphorylation at Y576/577 on activation loop by Src, suggesting Src-dependent regulation of FAK in Caco-2 monolayers. In an ethanol-induced barrier injury model, PF-228 treatment also inhibited the recovery of transepithelial resistance as well as these phosphorylations of FAK. In a sucrose gradient ultracentrifugation, FAK co-localized with claudin-1, an element of the TJ complex, and they co-migrate after ethanol-induced barrier injury. Immunofluorescence imaging analysis revealed that PF-228 inhibited the FAK redistribution to the cell border and reassembly of TJ proteins in the recovery after ethanol-induced barrier injury. Finally, knockdown of FAK by siRNA resulted in the decrease of transepithelial resistance. These findings reveal that activation of FAK is necessary for maintaining and repairing epithelial barrier in Caco-2 cell monolayer via regulating TJ redistribution.


Journal of Histochemistry and Cytochemistry | 2012

A unique ball-shaped Golgi apparatus in the rat pituitary gonadotrope: its functional implications in relation to the arrangement of the microtubule network.

T. Watanabe; Yuko Sakai; Daisuke Koga; Hiroki Bochimoto; Yoshiki Hira; Masahiro Hosaka; Tatsuo Ushiki

In polarized exocrine cells, the Golgi apparatus is cup-shaped and its convex and concave surfaces are designated as cis and trans faces, functionally confronting the rough endoplasmic reticulum and the cell surface, respectively. To clarify the morphological characteristics of the Golgi apparatus in non-polarized endocrine cells, the investigators immunocytochemically examined its precise architecture in pituitary gonadotropes, especially in relation to the arrangement of the intracellular microtubule network. The Golgi apparatus in the gonadotropes was not cup-shaped but ball-shaped or spherical, and its outer and inner surfaces were the cis and trans faces, respectively. Centrioles were situated at the center of the Golgi apparatus, from which radiating microtubules isotropically extended to the cell periphery through the gaps in the spherical wall of the Golgi stack. The shape of the Golgi apparatus and the arrangement of microtubules demonstrated in the present study could explain the microtubule-dependent movements of tubulovesicular carriers and granules within the gonadotropes. Furthermore, the spherical shape of the Golgi apparatus possibly reflects the highly symmetrical arrangement of microtubule arrays, as well as the poor polarity in the cell surface of pituitary gonadotropes.


Biochemical and Biophysical Research Communications | 2014

Nerve growth factor stimulates regeneration of perivascular nerve, and induces the maturation of microvessels around the injured artery.

Akira Asanome; Jun-ichi Kawabe; Motoki Matsuki; Maki Kabara; Yoshiki Hira; Hiroki Bochimoto; Atsushi Yamauchi; Tatsuya Aonuma; Naofumi Takehara; T. Watanabe; Naoyuki Hasebe

An immature vasa vasorum in the adventitia of arteries has been implicated in induction of the formation of unstable atherosclerotic plaques. Normalization/maturation of the vasa vasorum may be an attractive therapeutic approach for arteriosclerotic diseases. Nerve growth factor (NGF) is a pleotropic molecule with angiogenic activity in addition to neural growth effects. However, whether NGF affects the formation of microvessels in addition to innervation during pathological angiogenesis is unclear. In the present study, we show a new role for NGF in neovessels around injured arterial walls using a novel in vivo angiogenesis assay. The vasa vasorum around arterial walls was induced to grow using wire-mediated mouse femoral arterial injury. When collagen-coated tube (CCT) was placed beside the injured artery for 7-14 days, microvessels grew two-dimensionally in a thin layer on the CCT (CCT-membrane) in accordance with the development of the vasa vasorum. The perivascular nerve was found at not only arterioles but also capillaries in the CCT-membrane. Biodegradable hydrogels containing VEGF and NGF were applied around the injured artery/CCT. VEGF significantly increased the total length and instability of microvessels within the CCT-membrane. In contrast, NGF induced regeneration of the peripheral nerve around the microvessels and induced the maturation and stabilization of microvessels. In an ex vivo nerve-free angiogenesis assay, although NGF potentially stimulated vascular sprouting from aorta tissues, no effects of NGF on vascular maturation were observed. These data demonstrated that NGF had potent angiogenic effects on the microvessels around the injured artery, and especially induced the maturation/stabilization of microvessels in accordance with the regeneration of perivascular nerves.


Traffic | 2013

Multiple sorting systems for secretory granules ensure the regulated secretion of peptide hormones.

Meng Sun; T. Watanabe; Hiroki Bochimoto; Yuko Sakai; Seiji Torii; Toshiyuki Takeuchi; Masahiro Hosaka

Prior to secretion, regulated peptide hormones are selectively sorted to secretory granules (SGs) at the trans‐Golgi network (TGN) in endocrine cells. Secretogranin III (SgIII) appears to facilitate SG sorting process by tethering of protein aggregates containing chromogranin A (CgA) and peptide hormones to the cholesterol‐rich SG membrane (SGM). Here, we evaluated the role of SgIII in SG sorting in AtT‐20 cells transfected with small interfering RNA targeting SgIII. In the SgIII‐knockdown cells, the intracellular retention of CgA was greatly impaired, and only a trace amount of CgA was localized within the vacuoles formed in the TGN, confirming the significance of SgIII in both the tethering of CgA‐containing aggregates and the establishment of the proper SG morphology. Although the intracellular retention of proopiomelanocortin (POMC) was considerably impaired in SgIII‐knockdown cells, residual adrenocorticotropic hormone (ACTH)/POMC was still localized to some few remaining SGs together with another granin protein, secretogranin II (SgII), and was secreted in a regulated manner. Biochemical analyses indicated that SgII bound directly to the SGM in a cholesterol‐dependent manner and was able to retain the aggregated form of POMC, revealing a latent redundancy in the SG sorting and retention mechanisms, that ensures the regulated secretion of bioactive peptides.


Scientific Reports | 2015

An injured tissue affects the opposite intact peritoneum during postoperative adhesion formation

Tatsuya Suzuki; Toru Kono; Hiroki Bochimoto; Yoshiki Hira; T. Watanabe; Hiroyuki Furukawa

The pathophysiology of adhesion formation needs to be clarified to reduce the adhesion-related morbidity. The epithelial characteristics of the peritoneum suggest a protective role against adhesion formation, yet how the peritoneum is involved in adhesion formation is not well characterized. We microscopically observed an experimental model of adhesion formation to investigate the effects of an injured tissue on the opposite intact peritoneum. Adhesions were induced between injured and intact hepatic lobes, and the intact peritoneum opposite to the injured tissue was examined for 8 days. The opposite intact peritoneum was denuded of mesothelial cells for 6 hours, and the remnant mesothelial cells changed morphologically for 24 hours. The detachment of mesothelial cells allowed fibrin to attach to the basement membrane of the opposite peritoneum, connecting the two lobes. Moreover, macrophages and myofibroblasts accumulated between the two lobes, and angiogenesis occurred from the opposite intact lobe to the injured lobe. These observations indicate that an injured tissue deprives the opposite intact peritoneum of its epithelial structure and causes fibrous adhesions to the opposite intact tissue. This study implies a possible role of mesothelial cells for barrier function against adhesion formation, that is, keeping mesothelial cells intact might lead to its prophylaxis.


Molecular and Cellular Endocrinology | 2014

Functional implications of the Golgi and microtubular network in gonadotropes

T. Watanabe; Hiroki Bochimoto; Daisuke Koga; Masahiro Hosaka; Tatsuo Ushiki

In contrast to the widely accepted images of the Golgi apparatus as a cup-like shape, the Golgi in pituitary gonadotropes is organized as a spherical shape in which the outer and inner faces are cis- and trans-Golgi elements, respectively. At the center of the spherical Golgi, a pair of centrioles is situated as a microtubule-organizing center from which radiating microtubules isotropically extend toward the cell periphery. This review focuses on the significance of the characteristic organization of the Golgi and microtubule network in gonadotropes, considering the roles of microtubule-dependent membrane transport in the formation and maintenance of the Golgi structure. Because the highly symmetrical organization of the Golgi is possibly perturbed in response to experimental treatments of gonadotropes, monitoring of the Golgi structure in gonadotropes under various experimental conditions will be a novel in vivo approach to elucidate the biogenesis of the Golgi apparatus.


Neuroscience Research | 2013

Three-dimensional ultra-structures of myelin and the axons in the spinal cord: Application of SEM with the osmium maceration method to the central nervous system in two mouse models

Taichi Nomura; Yoshio Bando; Hiroki Bochimoto; Daisuke Koga; T. Watanabe; Shigetaka Yoshida

Axonal injury and demyelination are observed in demyelinating diseases such as multiple sclerosis. However, pathological changes that underlie these morphologies are not fully understood. We examined in vivo morphological changes using a new histological technique, scanning electron microscopy (SEM) with osmium maceration method to observe three-dimensional structures such as myelin and axons in the spinal cord. Myelin basic protein-deficient shiverer mice and mice with experimental autoimmune encephalomyelitis (EAE) were used to visualize how morphological changes in myelin and axons are induced by dysmyelination and demyelination. SEM revealed following morphological changes during dysmyelination of shiverer mice. First, enriched mitochondria and well-developed sER in axons were observed in shiverer, but not in wild-type mice. Second, the processes from some perinodal glial cells ran parallel to internodes of axons in addition to the process that covered the nodal region of the axon in shiverer mice. Last, this technique left myelin and axonal structures undisturbed. Moreover, SEM images showed clear variations in the ultrastructural abnormalities of myelin and axons in the white matter of the EAE spinal cord. This technique will be a powerful tool for identifying the mechanisms underlying the pathogenesis in demyelination.


Glia | 2018

Kallikrein 6 secreted by oligodendrocytes regulates the progression of experimental autoimmune encephalomyelitis

Yoshio Bando; Yoshiaki Hagiwara; Yasuhiro Suzuki; Kosuke Yoshida; Yoko Aburakawa; Takashi Kimura; Chisato Murakami; Miyuki Ono; Tatsuhide Tanaka; Ying-Ping Jiang; Branka Mitrovi; Hiroki Bochimoto; Osamu Yahara; Shigetaka Yoshida

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS), and experimental autoimmune encephalomyelitis (EAE) is a well‐established animal model of the disease. Here, we examined the pathophysiological role of Kallikrein 6 (Klk6), a serine protease produced by oligodendrocytes (OLs), in EAE using Klk6 knockout (Klk6−/−) mice. Compared with Klk6+/+ (wild‐type) mice, Klk6−/− mice showed milder EAE symptoms, including delayed onset and milder paralysis. Loss of Klk6 suppressed matrix metalloprotease‐9 expression and diminished the infiltration of peripheral inflammatory cells into the CNS by decreasing blood–brain barrier (BBB) permeability and reducing expression levels of inflammatory cytokines, chemokines and their receptors. Scanning electron microscopic analysis revealed demyelination characterized by myelin detachment from the axons in the early phase of EAE progression (days 3–7) in Klk6+/+ mice but not in Klk6−/− mice. Interestingly, anti‐MOG (myelin oligodendrocyte glycoprotein) autoantibody was also detected in the cerebrospinal fluid (CSF) and spinal cord on day 3 after MOG immunization. Furthermore, treatment of primary cultured OLs with anti‐MOG autoantibody induced oligodendroglial morphological changes and increases in myelin basic protein and Klk6 expression. We also developed a novel enzyme‐linked immunoabsorbent assay method for detecting activated KLK6 in human CSF. In human autopsy brain samples, expression of active KLK6 was detected in OLs using an antibody that specifically recognizes the proteins activated form. Taken together, our findings demonstrate that Klk6 secreted by OLs plays a critical role in the pathogenesis of EAE/MS and that it might serve as a potential therapeutic target for MS.


International Journal of Oncology | 2015

Prostaglandin I2 analog suppresses lung metastasis by recruiting pericytes in tumor angiogenesis.

Yoshinori Minami; Takaaki Sasaki; Hiroki Bochimoto; Jun-ichi Kawabe; Satoshi Endo; Yoshiki Hira; T. Watanabe; Shunsuke Okumura; Naoyuki Hasebe; Yoshinobu Ohsaki

Prostaglandin I2 (PGI2) agonist has been reported to reduce tumor metastasis by modifying tumor angiogenesis; however, the mechanisms of how PGI2 affects the endothelial cells or pericytes in tumor vessel maturation are still unclear. The purpose of this study was to clarify the effects of PGI2 on tumor metastasis in a mouse lung metastasis model using Lewis lung carcinoma (LLC) cells. The mice were treated continuously with beraprost sodium (BPS), a PGI2 analog, for 3 weeks and then examined for lung metastases. The number and size of lung metastases were decreased significantly by BPS treatment. In addition, scanning electron microscopy and immunohistochemistry revealed that BPS increased the number of tumor‑associated pericytes and improved intratumor hypoxia. Collectively, this study suggests that BPS attenuated vascular functional maturation in metastatic tumors.


PLOS ONE | 2017

The ultrastructural characteristics of porcine hepatocytes donated after cardiac death and preserved with warm machine perfusion preservation

Hiroki Bochimoto; Naoto Matsuno; Yo Ishihara; Tatsuya Shonaka; Daisuke Koga; Yoshiki Hira; Yuji Nishikawa; Hiroyuki Furukawa; Tsuyoshi Watanabe

The effects of warm machine perfusion preservation of liver grafts donated after cardiac death on the intracellular three-dimensional ultrastructure of the organelles in hepatocytes remain unclear. Here we analyzed comparatively the ultrastructure of the endomembrane systems in porcine hepatocytes under warm ischemia and successive hypothermic and midthermic machine perfusion preservation, a type of the warm machine perfusion. Porcine liver grafts which had a warm ischemia time of 60 minutes were perfused for 4 hours with modified University of Wisconsin gluconate solution. Group A grafts were preserved with hypothermic machine perfusion preservation at 8°C constantly for 4 hours. Group B grafts were preserved with rewarming up to 22°C by warm machine perfusion preservation for 4 hours. An analysis of hepatocytes after 60 minutes of warm ischemia by scanning electron microscope revealed the appearance of abnormal vacuoles and invagination of mitochondria. In the hepatocytes preserved by subsequent hypothermic machine perfusion preservation, strongly swollen mitochondria were observed. In contrast, the warm machine perfusion preservation could preserve the functional appearance of mitochondria in hepatocytes. Furthermore, abundant vacuoles and membranous structures sequestrating cellular organelles like autophagic vacuoles were frequently observed in hepatocytes after warm machine perfusion preservation. In conclusion, the ultrastructure of the endomembrane systems in the hepatocytes of liver grafts changed in accordance with the temperature conditions of machine perfusion preservation. In addition, temperature condition of the machine perfusion preservation may also affect the condition of the hepatic graft attributed to autophagy systems, and consequently alleviate the damage of the hepatocytes.

Collaboration


Dive into the Hiroki Bochimoto's collaboration.

Top Co-Authors

Avatar

T. Watanabe

Asahikawa Medical University

View shared research outputs
Top Co-Authors

Avatar

Yoshiki Hira

Asahikawa Medical College

View shared research outputs
Top Co-Authors

Avatar

Daisuke Koga

Asahikawa Medical University

View shared research outputs
Top Co-Authors

Avatar

Masahiro Hosaka

Akita Prefectural University

View shared research outputs
Top Co-Authors

Avatar

Jun-ichi Kawabe

Asahikawa Medical University

View shared research outputs
Top Co-Authors

Avatar

Naoyuki Hasebe

Asahikawa Medical University

View shared research outputs
Top Co-Authors

Avatar

Shigetaka Yoshida

Asahikawa Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshio Bando

Asahikawa Medical University

View shared research outputs
Top Co-Authors

Avatar

Yuko Sakai

Asahikawa Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge