Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroki Ueharu is active.

Publication


Featured researches published by Hiroki Ueharu.


Cell and Tissue Research | 2014

PRRX1 and PRRX2 distinctively participate in pituitary organogenesis and a cell-supply system

Masashi Higuchi; Saishu Yoshida; Hiroki Ueharu; Mo Chen; Takako Kato; Yukio Kato

Paired-related homeobox transcription factors, PRRX1 and PRRX2, are known to be important factors for craniofacial and limb morphogenesis. We recently cloned Prrx2 from the porcine adult pituitary cDNA library and found that only PRRX1 is present in the rat embryonic pituitary. In this study, we re-investigated the temporospatial expression and localization of PRRX1 and PRRX2 in the rat pituitary throughout life. The persistent expression of Prrx1 was ascertained after the middle stage of embryonic development, whereas significant expression of Prrx2 was found only in the postnatal pituitary. Immunohistochemistry confirmed that PRRX1-positive cells appeared inside the pituitary on embryonic day 16.5 in the marginal cell layer (MCL), a pituitary stem/progenitor cell niche, and the expanding parenchyma of the anterior pituitary. In contrast, PRRX2-positive cells first appeared in the anterior lobe and intermediate lobe sides of the MCL around postnatal day 30 when the postnatal pituitary growth wave had almost terminated. Immunostaining for PRRX1 with a stem/progenitor cell marker SOX2, a pituitary progenitor marker PROP1, or pituitary hormones revealed that PRRX1 localized in cells in the transition process from the multipotent progenitor stage to the early stage of terminal differentiation throughout life. PRRX2 emerged in cells positive for SOX2 but negative for PROP1 in the anterior and intermediate lobe sides of the postnatal MCL. Thus, PRRX1 and PRRX2 might participate distinctly in pituitary organogenesis and the postnatal cell-supply system.


Journal of Neuroendocrinology | 2013

Rapid transition of NESTIN-expressing dividing cells from PROP1-positive to PIT1-positive advances prenatal pituitary development.

Saishu Yoshida; Takako Kato; Masashi Higuchi; Hideji Yako; Mo Chen; Naoko Kanno; Hiroki Ueharu; Yukio Kato

We recently reported that the quantitative and qualitative transition of stem/progenitor cells occurs by the acquisition of a novel mechanism in the terminal differentiation during postnatal development of the anterior pituitary. We hypothesised that this novel mechanism is an alteration of a cell supply system accompanying proliferation of the progenitor cells. In the present study, we examined the proliferation activities of progenitor cells by indication of the expression of Nestin, a marker of rapidly dividing progenitor cells, aiming to verify our hypothesis and to resolve another outstanding issue regarding whether the Nestin gene is expressed in the pituitary. We found that NESTIN‐positive dividing cells certainly exist in the pituitary through all stages of development. Almost all of the PROP1‐positive progenitor cells express Nestin in early embryonic pituitary development. Thereafter, Nestin‐expressing dividing cells involved in the cell supply system transfer from PROP1‐positive progenitor cells to committed progenitor cells, such as PIT1‐positive cells, on neonatal pituitary development. Furthermore, our data, together with the findings of previous studies on cell lineage tracing analyses using Nestin‐Cre mice derived by the central nervous system (CNS)‐specific Nestin promoter, suggest that at least two regulation systems for Nestin‐expression exist in the pituitary, with the majority of these not being CNS‐specific.


Cell and Tissue Research | 2015

PRRX1- and PRRX2-positive mesenchymal stem/progenitor cells are involved in vasculogenesis during rat embryonic pituitary development

Masashi Higuchi; Takako Kato; Saishu Yoshida; Hiroki Ueharu; Naoto Nishimura; Yukio Kato

We have recently shown that cells positive for the paired-related homeobox transcription factors PRRX1 and PRRX2 occur in the rat pituitary, and that they are derived from two different origins: pituitary-derived cells positive for stem cell marker SOX2 and extra-pituitary-derived cells negative for SOX2. In this study, we have further characterized the PRRX1- and PRRX2-positive cells that originate from extra-pituitary cells. Immunohistochemical analyses were performed with specific antibodies against PRRX1 and PRRX2 in order to clarify their roles in pituitary vasculogenesis. PRRX1- and PRRX2-positive cells were found in Atwell’s recess and at the periphery of the pituitary on embryonic day 15.5 (E15.5). Several PRRX1-positive cells then invaded the anterior lobe, together with a few PRRX2-positive cells, on E16.5. Some PRRX1-positive cells were also positive for mesenchymal stem cell marker NESTIN. Moreover, some PRRX1/NESTIN double-positive cells showed characteristics of vascular endothelial cells with an Isolectin-B4-binding capacity. PRRX1 co-localized with vascular smooth muscle cell/pericyte marker α-smooth muscle actin in the deep area of Atwell’s recess. We confirmed the presence of PRRX2/NESTIN double-positive cells at an entry area in Atwell’s recess and at the periphery of the pituitary, but PRRX2 did not co-localize with Isolectin B4 or α-smooth muscle actin. These data suggest that PRRX1- and PRRX2-positive mesenchymal stem/progenitor cells are present at the periphery of the embryonic pituitary and at the entry from Atwell’s recess and participate in pituitary vasculogenesis by differentiation into vascular endothelial cells and pericytes, whereas the presence of PRRX2 indicates much higher stemness than PRRX1.


Journal of Anatomy | 2017

Gene tracing analysis reveals the contribution of neural crest‐derived cells in pituitary development

Hiroki Ueharu; Saishu Yoshida; Takako Kikkawa; Naoko Kanno; Masashi Higuchi; Takako Kato; Noriko Osumi; Yukio Kato

The anterior pituitary originates from the adenohypophyseal placode. Both the preplacode region and neural crest (NC) derive from subdivision of the neural border region, and further individualization of the placode domain is established by a reciprocal interaction between placodal precursors and NC cells (NCCs). It has long been known that NCCs are present in the adenohypophysis as interstitial cells. A recent report demonstrated that NCCs also contribute to the formation of pericytes in the developing pituitary. Here, we attempt to further clarify the role of NCCs in pituitary development using P0‐Cre/EGFP reporter mice. Spatiotemporal analyses revealed that GFP‐positive NCCs invaded the adenohypophysis in a stepwise manner. The first wave was detected on mouse embryonic day 9.5 (E9.5), when the pituitary primordium begins to be formed by adenohypophyseal placode cells; the second wave occurred on E14.5, when vasculogenesis proceeds from Atwells recess. Finally, fate tracing of NCCs demonstrated that NC‐derived cells in the adenohypophysis terminally differentiate into all hormone‐producing cell lineages as well as pericytes. Our data suggest that NCCs contribute to pituitary organogenesis and vasculogenesis in conjunction with placode‐derived pituitary stem/progenitor cells.


Stem Cell Research | 2016

Isolation of adult pituitary stem/progenitor cell clusters located in the parenchyma of the rat anterior lobe

Saishu Yoshida; Naoto Nishimura; Hiroki Ueharu; Naoko Kanno; Masashi Higuchi; Kotaro Horiguchi; Takako Kato; Yukio Kato

Recent studies have demonstrated that Sox2-expressing stem/progenitor cells play roles in the pituitary cell turnover. Two types of niches have been proposed for stem/progenitor cells, the marginal cell layer (MCL) and the dense cell clusters in the parenchyma. Among them, the appearance of the parenchymal-niche only after birth indicates that this niche is involved in the cell turnover required for the postnatal pituitary. However, little is known about the roles of the parenchymal-niche and its regulation. The present study aimed to isolate pituitary stem/progenitor cells from the parenchymal-niche in the adult rat pituitary. Cell dispersion by stepwise treatment with proteases allowed the isolation of dense cell clusters. Immunocytochemistry demonstrated that clusters are universally composed of SOX2-positive cells, and most of them are positive for PROP1. Taken together with the anatomical analysis, we concluded that the isolated clusters are the parenchymal stem/progenitor cell (PS)-clusters, not the MCL-one. PS-clusters cultivated by serum-free overlay 3-dimensional culture maintained their stemness, and treatment with bFGF and EGF induced cyst-formation. Moreover, PS-clusters demonstrated some differentiation capacity with GSK3β-inhibitor treatment. Collectively, the present study demonstrates a simple method for isolating stem/progenitor cells from the parenchymal-niche, and provides tools to analyze the factors for regulating the pituitary niches.


Journal of Reproduction and Development | 2014

Molecular Cloning of Rat and Porcine Retina-derived POU Domain Factor 1 (POU6F2) from a Pituitary cDNA Library

Saishu Yoshida; Hiroki Ueharu; Masashi Higuchi; Kotaro Horiguchi; Naoto Nishimura; Shiori Shibuya; Hideo Mitsuishi; Takako Kato; Yukio Kato

Homeobox transcription factors are known to play crucial roles in the anterior lobe of the pituitary gland. During molecular cloning with the Yeast One-Hybrid System using a 5’-upstream region of the porcine Fshβ as a bait sequence, we have cloned a cDNA encoding a partial sequence of the retina-derived POU domain factor 1 (RPF1) from the porcine pituitary cDNA library and confirmed its specific binding to the bait sequence. In situ hybridization was performed to examine localization of Rpf1 and showed that this gene is expressed in the stem/progenitor cells of the rat pituitary primordium as well as the diencephalon and retina. In addition, real-time PCR demonstrated that Rpf1 transcripts are abundant in early embryonic periods but that this is followed by a decrease during pituitary development, indicating that this factor plays a role in differentiating cells of the pituitary. The transcriptional activity of RPF1 for genes of Prop1, Prrx1 and Prrx2, which were characterized as genes participating in the pituitary stem/progenitor cells by our group, was then examined with full-length cDNA obtained from the rat pituitary. RPF1 showed regulatory activity for Prop1 and Prrx2, but not for Prrx1. These results indicate the involvement of this retina-derived factor in pituitary development.


Journal of Reproduction and Development | 2016

Search for regulatory factors of the pituitary-specific transcription factor PROP1 gene.

Naoto Nishimura; Hiroki Ueharu; Hiroto Nishihara; Shiori Shibuya; Saishu Yoshida; Masashi Higuchi; Naoko Kanno; Kotaro Horiguchi; Takako Kato; Yukio Kato

Pituitary-specific transcription factor PROP1, a factor important for pituitary organogenesis, appears on rat embryonic day 11.5 (E11.5) in SOX2-expressing stem/progenitor cells and always coexists with SOX2 throughout life. PROP1-positive cells at one point occupy all cells in Rathke’s pouch, followed by a rapid decrease in their number. Their regulatory factors, except for RBP-J, have not yet been clarified. This study aimed to use the 3 kb upstream region and 1st intron of mouse prop1 to pinpoint a group of factors selected on the basis of expression in the early pituitary gland for expression of Prop1. Reporter assays for SOX2 and RBP-J showed that the stem/progenitor marker SOX2 has cell type-dependent inhibitory and activating functions through the proximal and distal upstream regions of Prop1, respectively, while RBP-J had small regulatory activity in some cell lines. Reporter assays for another 39 factors using the 3 kb upstream regions in CHO cells ultimately revealed that 8 factors, MSX2, PAX6, PIT1, PITX1, PITX2, RPF1, SOX8 and SOX11, but not RBP-J, regulate Prop1 expression. Furthermore, a synergy effect with SOX2 was observed for an additional 10 factors, FOXJ1, HES1, HEY1, HEY2, KLF6, MSX1, RUNX1, TEAD2, YBX2 and ZFP36Ll, which did not show substantial independent action. Thus, we demonstrated 19 candidates, including SOX2, to be regulatory factors of Prop1 expression.


Cell and Tissue Research | 2016

Expression studies of neuronatin in prenatal and postnatal rat pituitary

Naoko Kanno; Masashi Higuchi; Saishu Yoshida; Hideji Yako; Mo Chen; Hiroki Ueharu; Naoto Nishimura; Takako Kato; Yukio Kato

The pituitary gland, an indispensable endocrine organ that synthesizes and secretes pituitary hormones, develops with the support of many factors. Among them, neuronatin (NNAT), which was discovered in the neonatal mouse brain as a factor involved in neural development, has subsequently been revealed to be coded by an abundantly expressing gene in the pituitary gland but its role remains elusive. We analyze the expression profile of Nnat and the localization of its product during rat pituitary development. The level of Nnat expression was high during the embryonic period but remarkably decreased after birth. Immunohistochemistry demonstrated that NNAT appeared in the SOX2-positive stem/progenitor cells in the developing pituitary primordium on rat embryonic day 11.5 (E11.5) and later in the majority of SOX2/PROP1 double-positive cells on E13.5. Thereafter, during pituitary embryonic development, Nnat expression was observed in some stem/progenitor cells, proliferating cells and terminally differentiating cells. In postnatal pituitaries, NNAT-positive cells decreased in number, with most coexpressing Sox2 or Pit1, suggesting a similar role for NNAT to that during the embryonic period. NNAT was widely localized in mitochondria, peroxisomes and lysosomes, in addition to the endoplasmic reticulum but not in the Golgi. The present study thus demonstrated the variability in expression of NNAT-positive cells in rat embryonic and postnatal pituitaries and the intracellular localization of NNAT. Further investigations to obtain functional evidence for NNAT are a prerequisite.


Journal of Reproduction and Development | 2014

Expression of Krüppel-like factor 6, KLF6, in rat pituitary stem/progenitor cells and its regulation of the PRRX2 gene.

Hiroki Ueharu; Masashi Higuchi; Naoto Nishimura; Saishu Yoshida; Shiori Shibuya; Kenta Sensui; Takako Kato; Yukio Kato

Paired-related transcription factors, PRRX1 and PRRX2, which are present in mesenchymal tissues and participate in mesenchymal cell differentiation, were recently found in the stem/progenitor cells of the pituitary gland of ectodermal origin. To clarify the role of PRRX1 and PRRX2 in the pituitary gland, the present study first aimed to identify transcription factors that regulate Prrx1 and Prrx2 expression. A promoter assay for the upstream regions of both genes was performed by co-transfection of the expression vector of several transcription factors, many of which are frequently found in the pituitary stem/progenitor cells. The results for the promoter activity of both genes showed expression in a cell type-dependent manner. Comprehensive comparison of transcriptional activity of several transcription factors was performed with CHO cells, which do not show Prrx1 and Prrx2 expression, and the results revealed the presence of common and distinct factors for both genes. Among them, KLF6 showed specific and remarkable stimulation of Prrx2 expression. In vitro experiments using an electrophoretic mobility shift assay and siRNA interference revealed a potential ability for regulation of Prrx2 expression by KLF6. Finally, immunohistochemistry confirmed the presence of KLF6 in the SOX2/PRRX2 double-positive stem/progenitor cells of the postnatal pituitary gland. Thus, the finding of KLF6 might provide a novel clue to clarify the maintenance of stem/progenitor cells of the postnatal pituitary gland.


Cell and Tissue Research | 2014

Expression of chemokine CXCL10 in dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.

Kotaro Horiguchi; Ken Fujiwara; Masashi Higuchi; Saishu Yoshida; Takehiro Tsukada; Hiroki Ueharu; Mo Chen; Rumi Hasegawa; Shu Takigami; Shunji Ohsako; Takashi Yashiro; Takako Kato; Yukio Kato

Chemokines are mostly small secreted polypeptides whose signals are mediated by seven trans-membrane G-protein-coupled receptors. Their functions include the control of leukocytes and the intercellular mediation of cell migration, proliferation, and adhesion in several tissues. We have previously revealed that the CXC chemokine ligand 12 (CXCL12) and its receptor 4 (CXCR4) are expressed in the anterior pituitary gland, and that the CXCL12/CXCR4 axis evokes the migration and interconnection of S100β-protein-positive cells (S100β-positive cells), which do not produce classical anterior pituitary hormones. However, little is known of the cells producing the other CXCLs and CXCRs or of their characteristics in the anterior pituitary. We therefore examined whether CXCLs and CXCRs occurred in the rat anterior pituitary lobe. We used reverse transcription plus the polymerase chain reaction to analyze the expression of Cxcl and Cxcr and identified the cells that expressed Cxcl by in situ hybridization. Transcripts of Cxcl10 and its receptor (Cxcr3 and toll-like receptor 4, Tlr4) were clearly detected: cells expressing Cxcl10 and Tlr4 were identified amongst S100β-positive cells and those expressing Cxcr3 amongst adrenocorticotropic hormone (ACTH)-producing cells. We also investigated Cxcl10 expression in subpopulations of S100β-positive cells. We separated cultured S100β-positive cells into the round-type (dendritic-cell-like) and process-type (astrocyte- or epithelial-cell-like) by their adherent activity to laminin, a component of the extracellular matrix; CXCL10 was expressed only in round-type S100β-positive cells. Thus, CXCL10 produced by a subpopulation of S100β-positive cells probably exerts an autocrine/paracrine effect on S100β-positive cells and ACTH-producing cells in the anterior lobe.

Collaboration


Dive into the Hiroki Ueharu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge