Hiroko K. Solvang
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hiroko K. Solvang.
Breast Cancer Research | 2010
Aslaug Aa Muggerud; Jo Anders Rønneberg; Fredrik Wärnberg; Johan Botling; Florence Busato; Jovana Jovanovic; Hiroko K. Solvang; Ida Bukholm; Anne Lise Børresen-Dale; Vessela N. Kristensen; Therese Sørlie; Jörg Tost
IntroductionDuctal carcinoma in situ (DCIS) is a non-invasive lesion of the breast that is frequently detected by mammography and subsequently removed by surgery. However, it is estimated that about half of the detected lesions would never have progressed into invasive cancer. Identifying DCIS and invasive cancer specific epigenetic lesions and understanding how these epigenetic changes are involved in triggering tumour progression is important for a better understanding of which lesions are at risk of becoming invasive.MethodsQuantitative DNA methylation analysis of ABCB1, CDKN2A/p16INK4a, ESR1, FOXC1, GSTP1, IGF2, MGMT, MLH1, PPP2R2B, PTEN and RASSF1A was performed by pyrosequencing in a series of 27 pure DCIS, 28 small invasive ductal carcinomas (IDCs), 34 IDCs with a DCIS component and 5 normal breast tissue samples. FOXC1, ABCB1, PPP2R2B and PTEN were analyzed in 23 additional normal breast tissue samples. Real-Time PCR expression analysis was performed for FOXC1.ResultsAberrant DNA methylation was observed in all three diagnosis groups for the following genes: ABCB1, FOXC1, GSTP1, MGMT, MLH1, PPP2R2B, PTEN and RASSF1A. For most of these genes, methylation was already present at the DCIS level with the same frequency as within IDCs. For FOXC1 significant differences in methylation levels were observed between normal breast tissue and invasive tumours (P < 0.001). The average DNA methylation levels were significantly higher in the pure IDCs and IDCs with DCIS compared to pure DCIS (P = 0.007 and P = 0.001, respectively). Real-time PCR analysis of FOXC1 expression from 25 DCIS, 23 IDCs and 28 normal tissue samples showed lower gene expression levels of FOXC1 in both methylated and unmethylated tumours compared to normal tissue (P < 0.001). DNA methylation levels of FOXC1, GSTP1, ABCB1 and RASSF1A were higher in oestrogen receptor (ER) positive vs. ER negative tumours; whereas methylation levels of FOXC1, ABCB1, PPP2R2B and PTEN were lower in tumours with a TP53 mutation.ConclusionsQuantitative methylation analysis identified ABCB1, FOXC1, PPP2R2B and PTEN as novel genes to be methylated in DCIS. In particular, FOXC1 showed a significant increase in the methylation frequency in invasive tumours. Low FOXC1 gene expression in both methylated and unmethylated DCIS and IDCs indicates that the loss of its expression is an early event during breast cancer progression.
Molecular Cancer | 2010
Emelyne Dejeux; Jo Anders Rønneberg; Hiroko K. Solvang; Ida R. K. Bukholm; Stephanie Geisler; Turid Aas; Ivo Gut; Anne Lise Børresen-Dale; Per Eystein Lønning; Vessela N. Kristensen; Jörg Tost
BackgroundBreast cancer is the most frequent cancer in women and consists of a heterogeneous collection of diseases with distinct histopathological, genetic and epigenetic characteristics. In this study, we aimed to identify DNA methylation based biomarkers to distinguish patients with locally advanced breast cancer who may benefit from neoadjuvant doxorubicin treatment.ResultsWe investigated quantitatively the methylation patterns in the promoter regions of 14 genes (ABCB1, ATM, BRCA1, CDH3, CDKN2A, CXCR4, ESR1, FBXW7, FOXC 1, GSTP1, IGF2, HMLH1, PPP2R2B, and PTEN) in 75 well-described pre-treatment samples from locally advanced breast cancer and correlated the results to the available clinical and molecular parameters. Six normal breast tissues were used as controls and 163 unselected breast cancer cases were used to validate associations with histopathological and clinical parameters.Aberrant methylation was detected in 9 out of the 14 genes including the discovery of methylation at the FOXC1 promoter. Absence of methylation at the ABCB1 promoter correlated with progressive disease during doxorubicin treatment. Most importantly, the DNA methylation status at the promoters of GSTP1, FOXC1 and ABCB1 correlated with survival, whereby the combination of methylated genes improved the subdivision with respect to the survival of the patients. In multivariate analysis GSTP1 and FOXC1 methylation status proved to be independent prognostic markers associated with survival.ConclusionsQuantitative DNA methylation profiling is a powerful tool to identify molecular changes associated with specific phenotypes. Methylation at the ABCB1 or GSTP1 promoter improved overall survival probably due to prolonged availability and activity of the drug in the cell while FOXC1 methylation might be a protective factor against tumour invasiveness. FOXC1 proved to be general prognostic factor, while ABCB1 and GSTP1 might be predictive factors for the response to and efficacy of doxorubicin treatment. Pharmacoepigenetic effects such as the reported associations in this study provide molecular explanations for differential responses to chemotherapy and it might prove valuable to take the methylation status of selected genes into account for patient management and treatment decisions.
Molecular Oncology | 2011
Jo Anders Rønneberg; Thomas Fleischer; Hiroko K. Solvang; Silje H. Nordgard; Hege Edvardsen; Ivan Potapenko; Daniel Nebdal; Christian Daviaud; Ivo Gut; Ida Bukholm; Bjørn Naume; Anne Lise Børresen-Dale; Jörg Tost; Vessela N. Kristensen
Breast cancer is a heterogeneous disease that can be divided in subtypes based on histology, gene expression profiles as well as differences in genomic aberrations. Distinct global DNA methylation profiles have been reported in normal breast epithelial cells as well as in breast tumors. However, the influence of the tumor methylome on the previously described subgroups of breast cancer is not fully understood. Here we report the DNA methylation profiles of 80 breast tumors using a panel of 807 cancer related genes interrogating 1505 CpG sites. We identified three major clusters based on the methylation profiles; one consisting of mainly tumors of myoepithelial origin and two other clusters with tumors of predominantly luminal epithelial origin. The clusters were different with respect to estrogen receptor status, TP53 status, ErbB2 status and grade. The most significantly differentially methylated genes including HDAC1, TFF1, OGG1, BMP3, FZD9 and HOXA11 were confirmed by pyrosequencing. Gene Ontology analysis revealed enrichment for genes involved in developmental processes including homeobox domain genes (HOXA9, HOXA11, PAX6, MYBL2, ISL1 and IPF1) and (ETS1, HDAC1, CREBBP, GAS7, SPI1 and TBX1). Extensive correlation to mRNA expression was observed. Pathway analyses identified a significant association with canonical (curated) pathways such as hepatic fibrosis including genes like EGF, NGFR and TNF, dendritic cell maturation and the NF‐κB signaling pathway. Our results show that breast tumor expression subtypes harbor major epigenetic differences and tumors with similar gene expression profiles might belong to epigenetically different subtypes. Some of the transcription factors identified, with key roles in differentiation and development might play a role in inducing and maintaining the different phenotypes.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Jiyoung Kim; René Villadsen; Therese Sørlie; Louise Fogh; Signe Z. Grønlund; Agla J. Fridriksdottir; Irene Kuhn; Fritz Rank; Vera Timmermans Wielenga; Hiroko K. Solvang; Paul A.W. Edwards; Anne Lise Børresen-Dale; Lone Rønnov-Jessen; Mina J. Bissell; Ole W. Petersen
The majority of human breast cancers exhibit luminal epithelial differentiation. However, most aggressive behavior, including invasion and purported cancer stem cell activity, are considered characteristics of basal-like cells. We asked the following questions: Must luminal-like breast cancer cells become basal-like to initiate tumors or to invade? Could luminally differentiated cells within a basally initiated hierarchy also be tumorigenic? To answer these questions, we used rare and mutually exclusive lineage markers to isolate subsets of luminal-like and basal-like cells from human breast tumors. We enriched for populations with or without prominent basal-like traits from individual tumors or single cell cloning from cell lines and recovered cells with a luminal-like phenotype. Tumor cells with basal-like traits mimicked phenotypic and functional behavior associated with stem cells assessed by gene expression, mammosphere formation and lineage markers. Luminal-like cells without basal-like traits, surprisingly, were fully capable of initiating invasive tumors in NOD SCID gamma (NSG) mice. In fact, these phenotypically pure luminal-like cells generated larger and more invasive tumors than their basal-like counterparts. The tumorigenicity and invasive potential of the luminal-like cancer cells relied strongly on the expression of the gene GCNT1, which encodes a key glycosyltransferase controlling O-glycan branching. These findings demonstrate that basal-like cells, as defined currently, are not a requirement for breast tumor aggressiveness, and that within a single tumor there are multiple “stem-like” cells with tumorigenic potential casting some doubt on the hypothesis of hierarchical or differentiative loss of tumorigenicity.
Cancer Research | 2008
Jo Anders Rønneberg; Jörg Tost; Hiroko K. Solvang; Grethe Grenaker Alnæs; Fredrik Ekeberg Johansen; Elen M. Brendeford; Zohar Yakhini; Ivo Gut; Per Eystein Lønning; Anne Lise Børresen-Dale; Odd S. Gabrielsen; Vessela N. Kristensen
The CpG island spanning the transcription start of the glutathione S-transferase P1 becomes methylated in a variety of human cancers including breast cancer. To study the effect of sequence variation on hypermethylation of the GSTP1 promoter, we analyzed the genetic and epigenetic variability in 90 tumors from patients with locally advanced breast cancer. High-resolution quantitative analysis revealed large variability in the DNA methylation levels. Lack of methylation was more often observed in the basal and normal-like estrogen receptor (ER)-negative tumors, and methylated GSTP1 was associated with better overall survival (P = 0.00063). Studies of the genetic variation identified 14 different haplotypes. The distribution of methylation levels of tumors homozygous for the most frequent haplotype was significantly different from other haplotype combinations (P = 0.011), the difference being more pronounced in ER-positive (P = 0.005) and progesterone receptor-positive (P = 0.008) tumors. Regression modeling identified the ER status and haplotype as the main determinants of DNA methylation variability. We identified a putative c-Myb response element (MRE) that was present in one of two minimal promoter haplotypes. In vitro analysis showed that c-Myb binds to the MRE, but binding was weakened by the two polymorphisms. Transient cotransfections in luminal-type and basal-like breast cancer cell lines confirmed cell-specific differential binding of c-Myb to the polymorphic sites, leading to a change in the expression from the GSTP1 promoter in vivo. GSTP1 expression was moderately but significantly (P = 0.01) reduced after siRNA-mediated knockdown of c-Myb. Our results indicate that haplotype structure of a promoter is important for the extent of DNA methylation.
BMC Cancer | 2013
Jovana Klajic; Thomas Fleischer; Emelyne Dejeux; Hege Edvardsen; Fredrik Wärnberg; Ida R. K. Bukholm; Per Eystein Lønning; Hiroko K. Solvang; Anne Lise Børresen-Dale; Jörg Tost; Vessela N. Kristensen
BackgroundAberrant DNA methylation of regulatory genes has frequently been found in human breast cancers and correlated to clinical outcome. In the present study we investigate stage specific changes in the DNA methylation patterns in order to identify valuable markers to understand how these changes affect breast cancer progression.MethodsQuantitative DNA methylation analyses of 12 candidate genes ABCB1, BRCCA1, CDKN2A, ESR1, GSTP1, IGF2, MGMT, HMLH1, PPP2R2B, PTEN, RASSF1A and FOXC1 was performed by pyrosequencing a series of 238 breast cancer tissue samples from DCIS to invasive tumors stage I to IV.ResultsSignificant differences in methylation levels between the DCIS and invasive stage II tumors were observed for six genes RASSF1A, CDKN2A, MGMT, ABCB1, GSTP1 and FOXC1. RASSF1A, ABCB1 and GSTP1 showed significantly higher methylation levels in late stage compared to the early stage breast carcinoma. Z-score analysis revealed significantly lower methylation levels in DCIS and stage I tumors compared with stage II, III and IV tumors. Methylation levels of PTEN, PPP2R2B, FOXC1, ABCB1 and BRCA1 were lower in tumors harboring TP53 mutations then in tumors with wild type TP53. Z-score analysis showed that TP53 mutated tumors had significantly lower overall methylation levels compared to tumors with wild type TP53. Methylation levels of RASSF1A, PPP2R2B, GSTP1 and FOXC1 were higher in ER positive vs. ER negative tumors and methylation levels of PTEN and CDKN2A were higher in HER2 positive vs. HER2 negative tumors. Z-score analysis also showed that HER2 positive tumors had significantly higher z-scores of methylation compared to the HER2 negative tumors. Univariate survival analysis identifies methylation status of PPP2R2B as significant predictor of overall survival and breast cancer specific survival.ConclusionsIn the present study we report that the level of aberrant DNA methylation is higher in late stage compared with early stage of invasive breast cancers and DCIS for genes mentioned above.
BMC Cancer | 2012
Janne B Kjersem; Tone Ikdahl; Tormod Kyrre Guren; Eva Skovlund; Halfdan Sorbye; Julian Hamfjord; Per Pfeiffer; Bengt Glimelius; Christian Kersten; Hiroko K. Solvang; Kjell Magne Tveit; Elin H. Kure
BackgroundRecent studies have reported associations between a variant allele in a let-7 microRNA complementary site (LCS6) within the 3′untranslated region (3′UTR) of KRAS (rs61764370) and clinical outcome in metastatic colorectal cancer (mCRC) patients receiving cetuximab. The variant allele has also been associated with increased cancer risk. We aimed to reveal the incidence of the variant allele in a colorectal cancer screening population and to investigate the clinical relevance of the variant allele in mCRC patients treated with 1st line Nordic FLOX (bolus 5-fluorouracil/folinic acid and oxaliplatin) +/− cetuximab.MethodsThe feasibility of the variant allele as a risk factor for CRC was investigated by comparing the LCS6 gene frequencies in 197 CRC patients, 1060 individuals with colorectal polyps, and 358 healthy controls. The relationship between clinical outcome and LCS6 genotype was analyzed in 180 mCRC patients receiving Nordic FLOX and 355 patients receiving Nordic FLOX + cetuximab in the NORDIC-VII trial (NCT00145314).ResultsLCS6 frequencies did not vary between CRC patients (23%), individuals with polyps (20%), and healthy controls (20%) (P = 0.50). No statistically significant differences were demonstrated in the NORDIC-VII cohort even if numerically increased progression-free survival (PFS) and overall survival (OS) were found in patients with the LCS6 variant allele (8.5 (95% CI: 7.3-9.7 months) versus 7.8 months (95% CI: 7.4-8.3 months), P = 0.16 and 23.5 (95% CI: 21.6-25.4 months) versus 19.5 months (95% CI: 17.8-21.2 months), P = 0.31, respectively). Addition of cetuximab seemed to improve response rate more in variant carriers than in wild-type carriers (from 35% to 57% versus 44% to 47%), however the difference was not statistically significant (interaction P = 0.16).ConclusionsThe LCS6 variant allele does not seem to be a risk factor for development of colorectal polyps or CRC. No statistically significant effect of the LCS6 variant allele on response rate, PFS or OS was found in mCRC patients treated with 1st line Nordic FLOX +/− cetuximab.
BMC Bioinformatics | 2011
Hiroko K. Solvang; Ole Christian Lingjærde; Arnoldo Frigessi; Anne Lise Børresen-Dale; Vessela N. Kristensen
BackgroundElucidating the exact relationship between gene copy number and expression would enable identification of regulatory mechanisms of abnormal gene expression and biological pathways of regulation. Most current approaches either depend on linear correlation or on nonparametric tests of association that are insensitive to the exact shape of the relationship. Based on knowledge of enzyme kinetics and gene regulation, we would expect the functional shape of the relationship to be gene dependent and to be related to the gene regulatory mechanisms involved. Here, we propose a statistical approach to investigate and distinguish between linear and nonlinear dependences between DNA copy number alteration and mRNA expression.ResultsWe applied the proposed method to DNA copy numbers derived from Illumina 109 K SNP-CGH arrays (using the log R values) and expression data from Agilent 44 K mRNA arrays, focusing on commonly aberrated genomic loci in a collection of 102 breast tumors. Regression analysis was used to identify the type of relationship (linear or nonlinear), and subsequent pathway analysis revealed that genes displaying a linear relationship were overall associated with substantially different biological processes than genes displaying a nonlinear relationship. In the group of genes with a linear relationship, we found significant association to canonical pathways, including purine and pyrimidine metabolism (for both deletions and amplifications) as well as estrogen metabolism (linear amplification) and BRCA-related response to damage (linear deletion). In the group of genes displaying a nonlinear relationship, the top canonical pathways were specific pathways like PTEN and PI13K/AKT (nonlinear amplification) and Wnt(B) and IL-2 signalling (nonlinear deletion). Both amplifications and deletions pointed to the same affected pathways and identified cancer as the top significant disease and cell cycle, cell signaling and cellular development as significant networks.ConclusionsThis paper presents a novel approach to assessing the validity of the dependence of expression data on copy number data, and this approach may help in identifying the drivers of carcinogenesis.
International Journal of Cancer | 2014
Thomas Fleischer; Hege Edvardsen; Hiroko K. Solvang; Christian Daviaud; Bjørn Naume; Anne Lise Børresen-Dale; Vessela N. Kristensen; Jörg Tost
Breast cancer is a heterogeneous disease for which alterations in DNA methylation patterns have been shown to be of biological and clinical importance. Here we report on the integrated analysis of molecular alterations including the methylation status of 27 gene promoters analyzed by highly quantitative pyrosequencing, and the association to gene expression, germline genotype and clinical parameters including survival. Breast cancer specific deregulation of DNA methylation (both hyper‐ and hypomethylation) was found in twenty genes including ACVR1, OGG1, IL8 and TFF1. The methylation level in the promoter regions was significantly negatively correlated to gene expression for twelve genes (such as MST1R, ST6GAL1 and TFF1) indicating that a gain of aberrant methylation (hypermethylation) inhibits gene expression. Multiple associations between molecular and clinical parameters were identified, and multivariate statistical analysis demonstrated that methylation was more strongly associated to clinical parameters than gene expression for the investigated genes. The methylation level of BCAP31 and OGG1 showed significant association to survival, and these associations were validated in a larger patient cohort (The Cancer Genome Atlas). Our study provides evidence for the promise of DNA methylation alterations for clinical applications.
BMC Medical Genomics | 2010
Margarethe Biong; Inger Torhild Gram; Ilene Brill; Fredrik Johansen; Hiroko K. Solvang; Grethe Ig Alnaes; Toril Fagerheim; Yngve Bremnes; Stephen J. Chanock; Laurie Burdett; Meredith Yeager; Giske Ursin; Vessela N. Kristensen
BackgroundIncreased mammographic density is one of the strongest independent risk factors for breast cancer. It is believed that one third of breast cancers are derived from breasts with more than 50% density. Mammographic density is affected by age, BMI, parity, and genetic predisposition. It is also greatly influenced by hormonal and growth factor changes in a womans life cycle, spanning from puberty through adult to menopause. Genetic variations in genes coding for hormones and growth factors involved in development of the breast are therefore of great interest. The associations between genetic polymorphisms in genes from the IGF pathway on mammographic density and circulating levels of IGF1, its binding protein IGFBP3, and their ratio in postmenopausal women are reported here.MethodsSamples from 964 postmenopausal Norwegian women aged 55-71 years were collected as a part of the Tromsø Mammography and Breast Cancer Study. All samples were genotyped for 25 SNPs in IGF1, IGF2, IGF1R, IGF2R, IGFALS and IGFBP3 using Taqman (ABI). The main statistical analyses were conducted with the PROC HAPLOTYPE procedure within SAS/GENETICS™ (SAS 9.1.3).ResultsThe haplotype analysis revealed six haploblocks within the studied genes. Of those, four had significant associations with circulating levels of IGF1 or IGFBP3 and/or mammographic density. One haplotype variant in the IGF1 gene was found to be associated with mammographic density. Within the IGF2 gene one haplotype variant was associated with levels of both IGF1 and IGFBP3. Two haplotype variants in the IGF2R were associated with the level of IGF1. Both variants of the IGFBP3 haplotype were associated with the IGFBP3 level and indicate regulation in cis.ConclusionPolymorphisms within the IGF1 gene and related genes were associated with plasma levels of IGF1, IGFBP3 and mammographic density in this study of postmenopausal women.