Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroko Kozuka-Hata is active.

Publication


Featured researches published by Hiroko Kozuka-Hata.


Journal of Experimental Medicine | 2009

Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA- but against RNA-sensing

Ryutaro Fukui; Shin-ichiroh Saitoh; Fumi Matsumoto; Hiroko Kozuka-Hata; Masaaki Oyama; Koichi Tabeta; Bruce Beutler; Kensuke Miyake

Toll-like receptors (TLRs) 3, 7, and 9 recognize microbial nucleic acids in endolysosomes and initiate innate and adaptive immune responses. TLR7/9 in dendritic cells (DCs) also respond to self-derived RNA/DNA, respectively, and drive autoantibody production. Remarkably, TLR7 and 9 appear to have mutually opposing, pathogenic or protective, impacts on lupus nephritis in MRL/lpr mice. Little is known, however, about the contrasting relationship between TLR7 and 9. We show that TLR7 and 9 are inversely linked by Unc93B1, a multiple membrane-spanning endoplasmic reticulum (ER) protein. Complementation cloning with a TLR7-unresponsive but TLR9-responsive cell line revealed that amino acid D34 in Unc93B1 repressed TLR7-mediated responses. D34A mutation rendered Unc93B1-deficient DCs hyperresponsive to TLR7 ligand but hyporesponsive to TLR9 ligand, with TLR3 responses unaltered. Unc93B1 associates with and delivers TLR7/9 from the ER to endolysosomes for ligand recognition. The D34A mutation up-regulates Unc93B1 association with endogenous TLR7 in DCs, whereas Unc93B1 association with TLR9 was down-regulated by the D34A mutation. Consistently, the D34A mutation up-regulated ligand-induced trafficking of TLR7 but down-regulated that of TLR9. Collectively, TLR response to nucleic acids in DCs is biased toward DNA-sensing by Unc93B1.


Nature | 2010

Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1

Jun Arii; Hideo Goto; Tadahiro Suenaga; Masaaki Oyama; Hiroko Kozuka-Hata; Takahiko Imai; Atsuko Minowa; Hiroomi Akashi; Hisashi Arase; Yoshihiro Kawaoka; Yasushi Kawaguchi

Herpes simplex virus-1 (HSV-1), the prototype of the α-herpesvirus family, causes life-long infections in humans. Although generally associated with various mucocutaneous diseases, HSV-1 is also involved in lethal encephalitis. HSV-1 entry into host cells requires cellular receptors for both envelope glycoproteins B (gB) and D (gD). However, the gB receptors responsible for its broad host range in vitro and infection of critical targets in vivo remain unknown. Here we show that non-muscle myosin heavy chain IIA (NMHC-IIA), a subunit of non-muscle myosin IIA (NM-IIA), functions as an HSV-1 entry receptor by interacting with gB. A cell line that is relatively resistant to HSV-1 infection became highly susceptible to infection by this virus when NMHC-IIA was overexpressed. Antibody to NMHC-IIA blocked HSV-1 infection in naturally permissive target cells. Furthermore, knockdown of NMHC-IIA in the permissive cells inhibited HSV-1 infection as well as cell–cell fusion when gB, gD, gH and gL were coexpressed. Cell-surface expression of NMHC-IIA was markedly and rapidly induced during the initiation of HSV-1 entry. A specific inhibitor of myosin light chain kinase, which regulates NM-IIA by phosphorylation, reduced the redistribution of NMHC-IIA as well as HSV-1 infection in cell culture and in a murine model for herpes stromal keratitis. NMHC-IIA is ubiquitously expressed in various human tissues and cell types and, therefore, is implicated as a functional gB receptor that mediates broad HSV-1 infectivity both in vitro and in vivo. The identification of NMHC-IIA as an HSV-1 entry receptor and the involvement of NM-IIA regulation in HSV-1 infection provide an insight into HSV-1 entry and identify new targets for antiviral drug development.


Genes & Development | 2011

The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II

Satoshi Abe; Kota Nagasaka; Youko Hirayama; Hiroko Kozuka-Hata; Masaaki Oyama; Yutaka Aoyagi; Chikashi Obuse; Toru Hirota

The cell cycle transition from interphase into mitosis is best characterized by the appearance of condensed chromosomes that become microscopically visible as thread-like structures in nuclei. Biochemically, launching the mitotic program requires the activation of the mitotic cyclin-dependent kinase Cdk1 (cyclin-dependent kinase 1), but whether and how Cdk1 triggers chromosome assembly at mitotic entry are not well understood. Here we report that mitotic chromosome assembly in prophase depends on Cdk1-mediated phosphorylation of the condensin II complex. We identified Thr 1415 of the CAP-D3 subunit as a Cdk1 phosphorylation site, which proved crucial as it was required for the Polo kinase Plk1 (Polo-like kinase 1) to localize to chromosome axes through binding to CAP-D3 and thereby hyperphosphorylate the condensin II complex. Live-cell imaging analysis of cells carrying nonphosphorylatable CAP-D3 mutants in place of endogenous protein suggested that phosphorylation of Thr 1415 is required for timely chromosome condensation during prophase, and that the Plk1-mediated phosphorylation of condensin II facilitates its ability to assemble chromosomes properly. These observations provide an explanation for how Cdk1 induces chromosome assembly in cells entering mitosis, and underscore the significance of the cooperative action of Plk1 with Cdk1.


Nature Communications | 2014

Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole

Midori Ohta; Tomoko Ashikawa; Yuka Nozaki; Hiroko Kozuka-Hata; Hidemasa Goto; Masaki Inagaki; Masaaki Oyama; Daiju Kitagawa

Formation of one procentriole next to each pre-existing centriole is essential for centrosome duplication, robust bipolar spindle assembly and maintenance of genome integrity. However, the mechanisms maintaining strict control over centriole copy number are incompletely understood. Here we show that Plk4 and STIL, the key regulators of centriole formation, form a protein complex that provides a scaffold for recruiting HsSAS-6, a major component of the centriolar cartwheel, at the onset of procentriole formation. Furthermore, we demonstrate that phosphorylation of STIL by Plk4 facilitates the STIL/HsSAS-6 interaction and centriolar loading of HsSAS-6. We also provide evidence that negative feedback by centriolar STIL regulates bimodal centriolar distribution of Plk4 and seemingly restricts occurrence of procentriole formation to one site on each parental centriole. Overall, these findings suggest a mechanism whereby coordinated action of three critical factors ensures formation of a single procentriole per parental centriole.


Molecular & Cellular Proteomics | 2007

Diversity of Translation Start Sites May Define Increased Complexity of the Human Short ORFeome

Masaaki Oyama; Hiroko Kozuka-Hata; Yutaka Suzuki; Kentaro Semba; Tadashi Yamamoto; Sumio Sugano

Our previous proteomics analysis of small proteins expressed in human K562 cells provided the first direct evidence of translation of upstream ORFs in human full-length cDNAs (Oyama, M., Itagaki, C., Hata, H., Suzuki, Y., Izumi, T., Natsume, T., Isobe, T., and Sugano, S. (2004) Analysis of small human proteins reveals the translation of upstream open reading frames of mRNAs. Genome Res. 14, 2048–2052). In the present study, we performed an in-depth proteomics analysis of human K562 and HEK293 cells using a two-dimensional nano-liquid chromatography-tandem mass spectrometry system. The results led to the identification of eight protein-coding regions besides 197 small proteins with a theoretical mass less than 20 kDa that were already annotated coding sequences in the curated mRNA database. In addition to the upstream ORFs in the presumed 5′-untranslated regions of mRNAs, bioinformatics analysis based on accumulated 5′-end cDNA sequence data provided evidence of novel short coding regions that were likely to be translated from the upstream non-AUG start site or from the new short transcript variants generated by utilization of downstream alternative promoters. Protein expression analysis of the GRINL1A gene revealed that translation from the most upstream start site occurred on the minor alternative splicing transcript, whereas this initiation site was not utilized on the major mRNA, resulting in translation of the downstream ORF from the second initiation codon. These findings reveal a novel post-transcriptional system that can augment the human proteome via the alternative use of diverse translation start sites coupled with transcriptional regulation through alternative promoters or splicing, leading to increased complexity of short protein-coding regions defined by the human transcriptome.


Molecular & Cellular Proteomics | 2009

Temporal Perturbation of Tyrosine Phosphoproteome Dynamics Reveals the System-wide Regulatory Networks

Masaaki Oyama; Hiroko Kozuka-Hata; Shinya Tasaki; Kentaro Semba; Seisuke Hattori; Sumio Sugano; Jun-ichiro Inoue; Tadashi Yamamoto

Signal transduction systems are known to widely regulate complex biological events such as cell proliferation and differentiation. Because phosphotyrosine-dependent networks play a key role in transmitting signals, a comprehensive and fine description of their dynamic behavior can lead us to systematically analyze the regulatory mechanisms that result in each biological effect. Here we established a mass spectrometry-based framework for analyzing tyrosine phosphoproteome dynamics through temporal network perturbation. A highly time-resolved description of the epidermal growth factor-dependent signaling pathways in human A431 cells revealed a global view of their multiphase network activation, comprising a spike signal transmission within 1 min of ligand stimulation followed by the prolonged activation of multiple Src-related molecules. Temporal perturbation of Src family kinases with the corresponding inhibitor PP2 in the prolonged activation phase led to the down-regulation of the molecules related to cell adhesion and receptor degradation, whereas the canonical cascades as well as the epidermal growth factor receptor relatively maintained their activities. Our methodology provides a system-wide view of the regulatory network clusters involved in signal transduction that is essential to refine the literature-based network structures for a systems biology analysis.


Nature Communications | 2016

Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein.

Takuma Hashimoto; Daiki D. Horikawa; Yuki Saito; Hirokazu Kuwahara; Hiroko Kozuka-Hata; Tadasu Shin-I; Yohei Minakuchi; Kazuko Ohishi; Ayuko Motoyama; Tomoyuki Aizu; Atsushi Enomoto; Koyuki Kondo; Sae Tanaka; Yuichiro Hara; Shigeyuki Koshikawa; Hiroshi Sagara; Toru Miura; Shin-ichi Yokobori; Kiyoshi Miyagawa; Yutaka Suzuki; Takeo Kubo; Masaaki Oyama; Yuji Kohara; Asao Fujiyama; Kazuharu Arakawa; Toshiaki Katayama; Atsushi Toyoda; Takekazu Kunieda

Tardigrades, also known as water bears, are small aquatic animals. Some tardigrade species tolerate almost complete dehydration and exhibit extraordinary tolerance to various physical extremes in the dehydrated state. Here we determine a high-quality genome sequence of Ramazzottius varieornatus, one of the most stress-tolerant tardigrade species. Precise gene repertoire analyses reveal the presence of a small proportion (1.2% or less) of putative foreign genes, loss of gene pathways that promote stress damage, expansion of gene families related to ameliorating damage, and evolution and high expression of novel tardigrade-unique proteins. Minor changes in the gene expression profiles during dehydration and rehydration suggest constitutive expression of tolerance-related genes. Using human cultured cells, we demonstrate that a tardigrade-unique DNA-associating protein suppresses X-ray-induced DNA damage by ∼40% and improves radiotolerance. These findings indicate the relevance of tardigrade-unique proteins to tolerability and tardigrades could be a bountiful source of new protection genes and mechanisms.


Cell Reports | 2014

5-Hydroxymethylcytosine Plays a Critical Role in Glioblastomagenesis by Recruiting the CHTOP-Methylosome Complex

Hiroki Takai; Koji Masuda; Tomohiro Sato; Yuriko Sakaguchi; Takeo Suzuki; Tsutomu Suzuki; Ryo Koyama-Nasu; Yukiko Nasu-Nishimura; Yuki Katou; Haruo Ogawa; Yasuyuki Morishita; Hiroko Kozuka-Hata; Masaaki Oyama; Tomoki Todo; Yasushi Ino; Akitake Mukasa; Nobuhito Saito; Chikashi Toyoshima; Katsuhiko Shirahige; Tetsu Akiyama

The development of cancer is driven not only by genetic mutations but also by epigenetic alterations. Here, we show that TET1-mediated production of 5-hydroxymethylcytosine (5hmC) is required for the tumorigenicity of glioblastoma cells. Furthermore, we demonstrate that chromatin target of PRMT1 (CHTOP) binds to 5hmC. We found that CHTOP is associated with an arginine methyltransferase complex, termed the methylosome, and that this promotes the PRMT1-mediated methylation of arginine 3 of histone H4 (H4R3) in genes involved in glioblastomagenesis, including EGFR, AKT3, CDK6, CCND2, and BRAF. Moreover, we found that CHTOP and PRMT1 are essential for the expression of these genes and that CHTOP is required for the tumorigenicity of glioblastoma cells. These results suggest that 5hmC plays a critical role in glioblastomagenesis by recruiting the CHTOP-methylosome complex to selective sites on the chromosome, where it methylates H4R3 and activates the transcription of cancer-related genes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

F1Fo-ATPase, F-type proton-translocating ATPase, at the plasma membrane is critical for efficient influenza virus budding

Takeo Gorai; Hideo Goto; Takeshi Noda; Tokiko Watanabe; Hiroko Kozuka-Hata; Masaaki Oyama; Ryo Takano; Gabriele Neumann; Shinji Watanabe; Yoshihiro Kawaoka

The identification of host factors involved in virus replication is important to understand virus life cycles better. Accordingly, we sought host factors that interact with the influenza viral nonstructural protein 2 by using coimmunoprecipitation followed by mass spectrometry. Among proteins associating with nonstructural protein 2, we focused on the β subunit of the F1Fo-ATPase, which received a high probability score in our mass spectrometry analysis. The siRNA-mediated down-regulation of the β subunit of the F1Fo-ATPase reduced influenza virion formation and virus growth in cell culture. We further found that efficient influenza virion formation requires the ATPase activity of F1Fo-ATPase and that plasma membrane-associated, but not mitochondrial, F1Fo-ATPase is important for influenza virion formation and budding. Hence, our data identify plasma membrane-associated F1Fo-ATPase as a critical host factor for efficient influenza virus replication.


Journal of Biological Chemistry | 2012

Mapping Ultra-weak Protein-Protein Interactions between Heme Transporters of Staphylococcus aureus

Ryota Abe; Jose M. M. Caaveiro; Hiroko Kozuka-Hata; Masaaki Oyama; Kouhei Tsumoto

Background: Isd proteins convey heme molecules across the bacterial cell wall by means of sequential and transient protein-protein complexes. Results: Photo-cross-linking experiments revealed the contact regions between the IsdC transporter and other Isd proteins. Conclusion: Transient interactions are governed by distinct structural elements around the heme-binding pocket of IsdC. Significance: Targeting this epitope could lead to successful therapeutic strategies against Staphylococcus aureus. Iron is an essential nutrient for the proliferation of Staphylococcus aureus during bacterial infections. The iron-regulated surface determinant (Isd) system of S. aureus transports and metabolizes iron porphyrin (heme) captured from the host organism. Transportation of heme across the thick cell wall of this bacterium requires multiple relay points. The mechanism by which heme is physically transferred between Isd transporters is largely unknown because of the transient nature of the interactions involved. Herein, we show that the IsdC transporter not only passes heme ligand to another class of Isd transporter, as previously known, but can also perform self-transfer reactions. IsdA shows a similar ability. A genetically encoded photoreactive probe was used to survey the regions of IsdC involved in self-dimerization. We propose an updated model that explicitly considers self-transfer reactions to explain heme delivery across the cell wall. An analogous photo-cross-linking strategy was employed to map transient interactions between IsdC and IsdE transporters. These experiments identified a key structural element involved in the rapid and specific transfer of heme from IsdC to IsdE. The resulting structural model was validated with a chimeric version of the homologous transporter IsdA. Overall, our results show that the ultra-weak interactions between Isd transporters are governed by bona fide protein structural motifs.

Collaboration


Dive into the Hiroko Kozuka-Hata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tadashi Yamamoto

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshihiro Kawaoka

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge