Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroko Matsuyoshi is active.

Publication


Featured researches published by Hiroko Matsuyoshi.


Journal of Neuroscience Research | 2008

Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes

Kouko Tatsumi; Hirohide Takebayashi; Takayuki Manabe; Kenji F. Tanaka; Manabu Makinodan; Takahira Yamauchi; Eri Makinodan; Hiroko Matsuyoshi; Hiroaki Okuda; Kazuhiro Ikenaka; Akio Wanaka

Olig2 is a basic helix‐loop‐helix (bHLH) transcription factor essential for development of motoneurons and oligodendrocytes. It is known that Olig2+ cells persist in the central nervous system (CNS) from embryonic to adult stages and that the number of Olig2+ progenitors increases in the injured adult CNS. Recent studies have demonstrated an inhibitory action of Olig2 on neurogenesis in adult CNS, but the fate of Olig2+ cells in the injured state remains largely unknown. To trace directly the fate of Olig2 cells in the adult cerebral cortex after injury, we employed the CreER/loxP system to target the olig2 locus. In this genetic tracing study, green fluorescent protein (GFP) reporter‐positive cells labeled after cryoinjury coexpressed glial fibrillary acidic protein (GFAP), an astrocytic marker. Electron microscopy also showed that GFP+ cells have the ultrastructural characteristics of astrocytes. Furthermore, GFP+ cells labeled before injury, most of which had been NG2 cells, also produced bushy astrocytes. Here we show direct evidence that Olig2+ cells preferentially differentiate into astrocytes, which strongly express GFAP, in response to injury in the adult cerebral cortex. These results suggest that reactive astrocytes, known to be the main contributors to glial scars, originate, at least in part, from Olig2+ cells.


Journal of Neuroscience Research | 2008

Maternal Immune Activation in Mice Delays Myelination and Axonal Development in the Hippocampus of the Offspring

Manabu Makinodan; Kouko Tatsumi; Takayuki Manabe; Takahira Yamauchi; Eri Makinodan; Hiroko Matsuyoshi; Shigero Shimoda; Yoshinobu Noriyama; Toshifumi Kishimoto; Akio Wanaka

Epidemiological data suggest a relationship between maternal infection and a high incidence of schizophrenia in offspring. An animal model based on this hypothesis was made by injecting double‐stranded RNA, polyinosinic‐polycytidylic acid (poly‐I:C), into early pregnant mice, and their offspring were examined for biochemical and histological abnormalities. Mouse brains were examined with special reference to oligodendrocytes, which have been implicated in several neurodevelopmental disorders. We detected a significant decrease of myelin basic protein (MBP) mRNA and protein at early postnatal periods in poly‐I:C mice. MBP immunocytochemistry and electron microscopy revealed that the hippocampus of juvenile poly‐I:C mice was less myelinated than in PBS mice, with no significant loss of oligodendrocytes. In addition, axonal diameters were significantly smaller in juvenile poly‐I:C mice than in control mice. These abnormalities reverted to normal levels when the animals reached the adult stage. These findings suggest that retarded myelination and axonal abnormalities in early postnatal stages caused by maternal immune activation could be related to schizophrenia‐related behaviors in adulthood.


Neurochemistry International | 2005

Characterization of cells with proliferative activity after a brain injury.

Kouko Tatsumi; Satomi Haga; Hiroko Matsuyoshi; Masahide Inoue; Takayuki Manabe; Manabu Makinodan; Akio Wanaka

The cellular responses to a brain injury are important steps in restoring the integrity and function of the brain. Proliferating cells, such as reactive astrocytes, oligodendrocyte precursor cells and microglia remodel the injured tissue. To spatially and temporally characterize the initial cellular responses in vivo, proliferating cells were pulse-labeled with BrdU soon after (the 2nd day) a cortical cryo-injury, and their fate was investigated by double labeling with an anti-BrdU antibody and antibodies to various cellular markers. Three days after the cryo-injury, a significant proportion of BrdU-positive cells were positive for NG2-proteoglycan, suggesting that oligodendrocyte progenitors (OPCs) were induced in response to injury. One-two weeks after the cryo-injury, the number of OPC was reduced and GFAP/BrdU double-positive cells, in turn, became dominant, while cells with mature oligodendrocyte markers did not increase significantly. Neuronal markers were rarely co-localized with BrdU immunoreactivity throughout the period studied. These findings imply that OPCs are prone to differentiate to astrocytes in the lesioned site. In this cryo-injury model, treatment with thyroid hormone (T4) altered cell fate; the increase in the number of GFAP/BrdU-positive cells was significantly diminished, and there was an increased number of mature oligodendrocytes (CNPase, PLP-positive) exhibiting BrdU immunoreactivity. These findings suggest that modification of proliferating progenitors in injured brain by hormonal or chemical treatment might benefit functional regeneration.


Journal of Neurochemistry | 2005

L3/Lhx8 is involved in the determination of cholinergic or GABAergic cell fate

Takayuki Manabe; Kouko Tatsumi; Masahide Inoue; Hiroko Matsuyoshi; Manabu Makinodan; Shohei Yokoyama; Akio Wanaka

The LIM homeobox family of transcription factors is involved in many processes during the development of the mammalian central nerves system. L3, also called Lhx8 (L3/Lhx8), is a recently identified member of the LIM homeobox gene family and is selectively expressed in the medial ganglionic eminence (MGE). Our previous study demonstrated that L3/Lhx8‐null mice specifically lacked cholinergic neurons in the basal forebrain. In this study, we reduced L3/Lhx8 function in the murine neuroblastoma cell line, Neuro2a (N2a), using L3/Lhx8‐targeted small interfering RNA (siRNA) produced by H1.2 promoter‐driven vector. The levels of cholinergic markers per cell were diminished without a reduction in the number of marker‐positive cells. Intriguingly, GABAergic marker expression and the number of GABAergic cells were dramatically increased in the differentiating L3/Lhx8‐knockdown N2a. These results suggest the possibility that L3/Lhx8 is involved in the determination of transmitter phenotypes (GABAergic or cholinergic cell fate) in a population of neurons during basal forebrain development.


Neurogastroenterology and Motility | 2010

A 5-HT(4)-receptor activation-induced neural plasticity enhances in vivo reconstructs of enteric nerve circuit insult.

Hiroko Matsuyoshi; Hiroki Kuniyasu; M. Okumura; Hiromi Misawa; Renta Katsui; Guo-Xing Zhang; Koji Obata; Miyako Takaki

Background  It was recently reported that some 5‐HT4‐receptor agonists increased neuronal numbers and length of neurites in enteric neurons developing in vitro from immunoselected neural crest‐derived precursors. We aimed to explore a novel approach in vivo to reconstruct the enteric neural circuitry that mediates a fundamental distal gut reflex.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Cardioprotective effects of a novel calpain inhibitor SNJ-1945 for reperfusion injury after cardioplegic cardiac arrest

Yoshiro Yoshikawa; Guo-Xing Zhang; Koji Obata; Yoshimi Ohga; Hiroko Matsuyoshi; Shigeki Taniguchi; Miyako Takaki

We have previously indicated that calpain inhibitor-1 prevents the heart from ischemia- reperfusion injury associated with the impairment of total Ca(2+) handling by inhibiting the proteolysis of alpha-fodrin. However, this inhibitor is insoluble with water and inappropriate for clinical application. The aim of the present study was to investigate the protective effect of a newly developed calpain inhibitor, SNJ-1945 (SNJ), with good aqueous solubility on left ventricular (LV) mechanical work and energetics in the cross-circulated rat hearts. SNJ (150 microM) was added to KCl (30 meq) cardioplegia (CP). Mean end-systolic pressure at midrange LV volume (ESP(mLVV)) and systolic pressure-volume area (PVA) at mLVV (PVA(mLVV); a total mechanical energy per beat) were hardly changed after CP plus SNJ arrest-reperfusion (post-CP + SNJ), whereas ESP(mLVV) and PVA(mLVV) in post-CP group were significantly (P < 0.01) decreased. Mean myocardial oxygen consumption for the total Ca(2+) handling in excitation-contraction coupling did not significantly decrease in post-CP + SNJ group, whereas it was significantly (P < 0.01) decreased in post-CP group. The mean amounts of 145- and 150-kDa fragments of alpha-fodrin in the post-CP group were significantly larger than those in normal and post-CP + SNJ groups. In contrast, the mean amounts of L-type Ca(2+) channel and sarcoplasmic reticulum Ca(2+)-ATPase were not significantly different among normal, post-CP, and post-CP + SNJ groups. Our results indicate that soluble SNJ attenuates cardiac dysfunction due to CP arrest-reperfusion injury associated with the impairment of the total Ca(2+) handling in excitation-contraction coupling by inhibiting the proteolysis of alpha-fodrin.


Brain Research | 2006

Characterization of hyperpolarization-activated current (Ih) in dorsal root ganglion neurons innervating rat urinary bladder.

Noriyuki Masuda; Yukio Hayashi; Hiroko Matsuyoshi; Michael B. Chancellor; William C. de Groat; Naoki Yoshimura

Afferent pathways innervating the urinary bladder consist of myelinated Adelta-fibers and unmyelinated C-fibers. Normal voiding is dependent on mechanoceptive Adelta-fiber bladder afferents that respond to bladder distention. However, the mechanisms for controlling the excitability of Adelta-fiber bladder afferents are not fully understood. We therefore used whole cell patch-clamp techniques to investigate the properties of hyperpolarization-activated, cyclic nucleotide-gated (HCN) currents (I(h)) in dorsal root ganglion (DRG) neurons innervating the urinary bladder of rats. The neurons were identified by axonal tracing with a fluorescent dye, Fast Blue, injected into the bladder wall. Hyperpolarizing voltage step pulses from -40 to -130 mV produced voltage- and time-dependent inward I(h) currents in bladder afferent neurons. The amplitude and current density of I(h) at a holding potential of -130 mV was significantly larger in medium-sized bladder afferent neurons (diameter: 37.8 +/- 0.3 microm), a small portion (19%) of which were sensitive to capsaicin (1 microM), than in uniformly capsaicin-sensitive small-sized (27.6 +/- 0.5 microm) bladder neurons. In medium-sized bladder neurons, a selective HCN channel inhibitor, ZD7288, dose-dependently inhibited I(h) currents. ZD7288 (10 microM) also increased the time constant of the slow depolarization phase of spike after-hyperpolarization from 91.8 to 233.0 ms. These results indicate that I(h) currents are predominantly expressed in medium-sized bladder afferent neurons innervating the bladder and that inhibition of I(h) currents delayed recovery from the spike after-hyperpolarization. Thus, it is assumed that I(h) currents could control excitability of mechanoceptive Adelta-fiber bladder afferent neurons, which are usually capsaicin-insensitive and larger in size than capsaicin-sensitive C-fiber bladder afferent neurons.


Brain Research | 2006

Expression of hyperpolarization-activated cyclic nucleotide-gated cation channels in rat dorsal root ganglion neurons innervating urinary bladder.

Hiroko Matsuyoshi; Noriyuki Masuda; Michael B. Chancellor; Vickie L. Erickson; Yoshihiko Hirao; William C. de Groat; Akio Wanaka; Naoki Yoshimura

Afferent pathways innervating the urinary bladder consist of myelinated Adelta- and unmyelinated C-fibers, the neuronal cell bodies of which correspond to medium and small-sized cell populations of dorsal root ganglion (DRG) neurons, respectively. Since hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel currents have been identified in various peripheral sensory neurons, we examined the expression of isoforms of HCN channels in the L6-S1 spinal cord and bladder afferent neurons from L6-S1 DRG in rats. Among HCN-1, HCN-2 and HCN-4 channel subtypes, positive staining with HCN-2 antibodies was found in the superficial dorsal horn of the spinal cord and small- and medium-sized unidentified DRG neurons. In dye-labeled bladder afferent neurons, HCN-2-positive cells were found in approximately 60% of neurons, and HCN-2 was expressed in both small- and medium-sized neurons with a higher ratio (expression ratio: 61% and 50% of neurons, respectively) compared with unidentified DRG neurons, in which the HCN expression ratio was 47% and 21% of small- and medium-sized cells, respectively. These results suggest that HCN-2 is the predominant subtype of HCN channels, which can control neuronal excitability, in small-sized C-fiber and medium-sized Adelta fiber DRG neurons including bladder afferent neurons, and might modulate activity of bladder afferent pathways controlling the micturition reflex.


Journal of Chemical Neuroanatomy | 2010

Transient activation of Notch signaling in the injured adult brain

Kouko Tatsumi; Hiroaki Okuda; Manabu Makinodan; Takahira Yamauchi; Eri Makinodan; Hiroko Matsuyoshi; Takayuki Manabe; Akio Wanaka

Brain injury induces various kinds of cellular responses that lead to tissue regeneration and repair. Recent studies have demonstrated that resident progenitors proliferate and then differentiate into mature neuronal cells. We show here that proliferating cells in the cryo-injured cerebral cortex transiently expressed Notch1 immunoreactivity in their cytoplasm. Since activated Notch signaling regulates cellular fate in the developing nervous system, similar regulation may exist in the injured adult brain. To monitor the Notch signaling pathway, we examined whether components of the signaling pathway were co-expressed in Notch1-positive cells. Presenilin-1, a membrane-spanning protease that is required for the release of the Notch intracellular domain, was detected in the Notch1-positive cells and Hes1, a target of the Notch intracellular domain, also co-localized with Notch1 three days after cryo-injury. These results suggest that transient activity of the Notch signaling pathway is involved in the regulation of proliferation and differentiation of progenitors in the injured brain.


Life Sciences | 2012

Distinct cellular distributions of Kv4 pore-forming and auxiliary subunits in rat dorsal root ganglion neurons

Hiroko Matsuyoshi; Koichi Takimoto; Takakazu Yunoki; Vickie L. Erickson; Pradeep Tyagi; Yoshihiko Hirao; Akio Wanaka; Naoki Yoshimura

AIMS Dorsal root ganglia contain heterogeneous populations of primary afferent neurons that transmit various sensory stimuli. This functional diversity may be correlated with differential expression of voltage-gated K(+) (Kv) channels. Here, we examine cellular distributions of Kv4 pore-forming and ancillary subunits that are responsible for fast-inactivating A-type K(+) current. MAIN METHODS Expression pattern of Kv α-subunit, β-subunit and auxiliary subunit was investigated using immunohistochemistry, in situ hybridization and RT-PCR technique. KEY FINDINGS The two pore-forming subunits Kv4.1 and Kv4.3 show distinct cellular distributions: Kv4.3 is predominantly in small-sized C-fiber neurons, whereas Kv4.1 is seen in DRG neurons in various sizes. Furthermore, the two classes of Kv4 channel auxiliary subunits are also distributed in different-sized cells. KChIP3 is the only significantly expressed Ca(2+)-binding cytosolic ancillary subunit in DRGs and present in medium to large-sized neurons. The membrane-spanning auxiliary subunit DPP6 is seen in a large number of DRG neurons in various sizes, whereas DPP10 is restricted in small-sized neurons. SIGNIFICANCE Distinct combinations of Kv4 pore-forming and auxiliary subunits may constitute A-type channels in DRG neurons with different physiological roles. Kv4.1 subunit, in combination with KChIP3 and/or DPP6, form A-type K(+) channels in medium to large-sized A-fiber DRG neurons. In contrast, Kv4.3 and DPP10 may contribute to A-type K(+) current in non-peptidergic, C-fiber somatic afferent neurons.

Collaboration


Dive into the Hiroko Matsuyoshi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akio Wanaka

Nara Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koji Obata

Nara Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge