Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroko Wakimoto is active.

Publication


Featured researches published by Hiroko Wakimoto.


Nature | 2013

De novo mutations in histone-modifying genes in congenital heart disease.

Samir Zaidi; Murim Choi; Hiroko Wakimoto; Lijiang Ma; Jianming Jiang; John D. Overton; Angela Romano-Adesman; Robert D. Bjornson; Roger E. Breitbart; Kerry K. Brown; Nicholas Carriero; Yee Him Cheung; John Deanfield; Steve Depalma; Khalid A. Fakhro; Joseph T. Glessner; Hakon Hakonarson; Jonathan R. Kaltman; Juan P. Kaski; Richard Kim; Jennie Kline; Teresa Lee; Jeremy Leipzig; Alexander E. Lopez; Shrikant Mane; Laura E. Mitchell; Jane W. Newburger; Michael Parfenov; Itsik Pe'er; George A. Porter

Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% of live births. Many cases occur sporadically and impair reproductive fitness, suggesting a role for de novo mutations. Here we compare the incidence of de novo mutations in 362 severe CHD cases and 264 controls by analysing exome sequencing of parent–offspring trios. CHD cases show a significant excess of protein-altering de novo mutations in genes expressed in the developing heart, with an odds ratio of 7.5 for damaging (premature termination, frameshift, splice site) mutations. Similar odds ratios are seen across the main classes of severe CHD. We find a marked excess of de novo mutations in genes involved in the production, removal or reading of histone 3 lysine 4 (H3K4) methylation, or ubiquitination of H2BK120, which is required for H3K4 methylation. There are also two de novo mutations in SMAD2, which regulates H3K27 methylation in the embryonic left–right organizer. The combination of both activating (H3K4 methylation) and inactivating (H3K27 methylation) chromatin marks characterizes ‘poised’ promoters and enhancers, which regulate expression of key developmental genes. These findings implicate de novo point mutations in several hundreds of genes that collectively contribute to approximately 10% of severe CHD.


Journal of Clinical Investigation | 2010

Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β

Polakit Teekakirikul; Seda Eminaga; Okan Toka; Ronny Alcalai; Libin Wang; Hiroko Wakimoto; Matthew Nayor; Tetsuo Konno; Joshua M. Gorham; Cordula M. Wolf; Jae B. Kim; Joachim P. Schmitt; Jefferey D. Molkentin; Russell A. Norris; Andrew M. Tager; Stanley Hoffman; Roger R. Markwald; Christine E. Seidman; Jonathan G. Seidman

Mutations in sarcomere protein genes can cause hypertrophic cardiomyopathy (HCM), a disorder characterized by myocyte enlargement, fibrosis, and impaired ventricular relaxation. Here, we demonstrate that sarcomere protein gene mutations activate proliferative and profibrotic signals in non-myocyte cells to produce pathologic remodeling in HCM. Gene expression analyses of non-myocyte cells isolated from HCM mouse hearts showed increased levels of RNAs encoding cell-cycle proteins, Tgf-β, periostin, and other profibrotic proteins. Markedly increased BrdU labeling, Ki67 antigen expression, and periostin immunohistochemistry in the fibrotic regions of HCM hearts confirmed the transcriptional profiling data. Genetic ablation of periostin in HCM mice reduced but did not extinguish non-myocyte proliferation and fibrosis. In contrast, administration of Tgf-β-neutralizing antibodies abrogated non-myocyte proliferation and fibrosis. Chronic administration of the angiotensin II type 1 receptor antagonist losartan to mutation-positive, hypertrophy-negative (prehypertrophic) mice prevented the emergence of hypertrophy, non-myocyte proliferation, and fibrosis. Losartan treatment did not reverse pathologic remodeling of established HCM but did reduce non-myocyte proliferation. These data define non-myocyte activation of Tgf-β signaling as a pivotal mechanism for increased fibrosis in HCM and a potentially important factor contributing to diastolic dysfunction and heart failure. Preemptive pharmacologic inhibition of Tgf-β signals warrants study in human patients with sarcomere gene mutations.


Journal of Clinical Investigation | 2004

Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system

Patrick Y. Jay; Brett S. Harris; Colin T. Maguire; Antje Buerger; Hiroko Wakimoto; Makoto Tanaka; Sabina Kupershmidt; Dan M. Roden; Thomas M. Schultheiss; Terrence X. O’Brien; Robert G. Gourdie; Charles I. Berul; Seigo Izumo

Heterozygous mutations of the cardiac transcription factor Nkx2-5 cause atrioventricular conduction defects in humans by unknown mechanisms. We show in KO mice that the number of cells in the cardiac conduction system is directly related to Nkx2-5 gene dosage. Null mutant embryos appear to lack the primordium of the atrioventricular node. In Nkx2-5 haploinsufficiency, the conduction system has half the normal number of cells. In addition, an entire population of connexin40(-)/connexin45(+) cells is missing in the atrioventricular node of Nkx2-5 heterozygous KO mice. Specific functional defects associated with Nkx2-5 loss of function can be attributed to hypoplastic development of the relevant structures in the conduction system. Surprisingly, the cellular expression of connexin40, the major gap junction isoform of Purkinje fibers and a putative Nkx2-5 target, is unaffected, consistent with normal conduction times through the His-Purkinje system measured in vivo. Postnatal conduction defects in Nkx2-5 mutation may result at least in part from a defect in the genetic program that governs the recruitment or retention of embryonic cardiac myocytes in the conduction system.


Science | 2015

De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies

Jason Homsy; Samir Zaidi; Yufeng Shen; James S. Ware; Kaitlin E. Samocha; Konrad J. Karczewski; Steven R. DePalma; David M. McKean; Hiroko Wakimoto; Josh Gorham; Sheng Chih Jin; John Deanfield; Alessandro Giardini; George A. Porter; Richard Kim; Kaya Bilguvar; Francesc López-Giráldez; Irina Tikhonova; Shrikant Mane; Angela Romano-Adesman; Hongjian Qi; Badri N. Vardarajan; Lijiang Ma; Mark J. Daly; Amy E. Roberts; Mark W. Russell; Seema Mital; Jane W. Newburger; J. William Gaynor; Roger E. Breitbart

Putting both heart and brain at risk For reasons that are unclear, newborns with congenital heart disease (CHD) have a high risk of neurodevelopmental disabilities. Homsy et al. performed exome sequence analysis of 1200 CHD patients and their parents to identify spontaneously arising (de novo) mutations. Patients with both CHD and neurodevelopmental disorders had a much higher burden of damaging de novo mutations, particularly in genes with likely roles in both heart and brain development. Thus, clinical genotyping of patients with CHD may help to identify those at greatest risk of neurodevelopmental disabilities, allowing surveillance and early intervention. Science, this issue p. 1262 Genotyping of children with congenital heart disease may identify those at high risk of neurodevelopmental disorders. Congenital heart disease (CHD) patients have an increased prevalence of extracardiac congenital anomalies (CAs) and risk of neurodevelopmental disabilities (NDDs). Exome sequencing of 1213 CHD parent-offspring trios identified an excess of protein-damaging de novo mutations, especially in genes highly expressed in the developing heart and brain. These mutations accounted for 20% of patients with CHD, NDD, and CA but only 2% of patients with isolated CHD. Mutations altered genes involved in morphogenesis, chromatin modification, and transcriptional regulation, including multiple mutations in RBFOX2, a regulator of mRNA splicing. Genes mutated in other cohorts examined for NDD were enriched in CHD cases, particularly those with coexisting NDD. These findings reveal shared genetic contributions to CHD, NDD, and CA and provide opportunities for improved prognostic assessment and early therapeutic intervention in CHD patients.


Journal of Molecular and Cellular Cardiology | 2003

Heart block, ventricular tachycardia, and sudden death in ACE2 transgenic mice with downregulated connexins

Mary Donoghue; Hiroko Wakimoto; Colin T. Maguire; Susan Acton; Paul Hales; Nancy E. Stagliano; Victoria Fairchild-Huntress; Jian Xu; John N. Lorenz; Vivek J. Kadambi; Charles I. Berul; Roger E. Breitbart

Angiotensin converting enzyme related carboxypeptidase (ACE2) is a recently discovered homolog of angiotensin converting enzyme with tissue-restricted expression, including heart, and the capacity to cleave angiotensin peptides. We tested the hypothesis that cardiac ACE2 activity contributes to features of ventricular remodeling associated with the renin-angiotensin system by generating transgenic mice with increased cardiac ACE2 expression. These animals had a high incidence of sudden death that correlated with transgene expression levels. Detailed electrophysiology revealed severe, progressive conduction and rhythm disturbances with sustained ventricular tachycardia and terminal ventricular fibrillation. The gap junction proteins connexin40 and connexin43 were downregulated in the transgenic hearts, indicating that ACE2-mediated gap junction remodeling may account for the observed electrophysiologic disturbances. Spontaneous downregulation of the ACE2 transgene in surviving older animals correlated with restoration of nearly normal conduction, rhythm, and connexin expression.


Journal of Clinical Investigation | 2001

Progressive atrioventricular conduction defects and heart failure in mice expressing a mutant Csx/Nkx2.5 homeoprotein

Hideko Kasahara; Hiroko Wakimoto; Margaret Liu; Colin T. Maguire; Kimber L. Converso; Tetsuo Shioi; Weei-Yuarn Huang; Warren J. Manning; David L. Paul; Joel Lawitts; Charles I. Berul; Seigo Izumo

A DNA nonbinding mutant of the NK2 class homeoprotein Nkx2.5 dominantly inhibits cardiogenesis in Xenopus embryos, causing a small heart to develop or blocking heart formation entirely. Recently, ten heterozygous CSX/NKX2.5 homeoprotein mutations were identified in patients with congenital atrioventricular (AV) conduction defects. All four missense mutations identified in the human homeodomain led to markedly reduced DNA binding. To examine the effect of a DNA binding-impaired mutant of mouse Csx/Nkx2.5 in the embryonic heart, we generated transgenic mice expressing one such allele, I183P, under the beta-myosin heavy chain promoter. Unexpectedly, transgenic mice were born apparently normal, but the accumulation of Csx/Nkx2.5(I183P) mutant protein in the embryo, neonate, and adult myocardium resulted in progressive and profound cardiac conduction defects and heart failure. P-R prolongation observed at 2 weeks of age rapidly progressed into complete AV block as early as 4 weeks of age. Expression of connexins 40 and 43 was dramatically decreased in the transgenic heart, which may contribute to the conduction defects in the transgenic mice. This transgenic mouse model may be useful in the study of the pathogenesis of cardiac dysfunction associated with CSX/NKX2.5 mutations in humans.


Science | 2016

A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice.

Eric M. Green; Hiroko Wakimoto; Robert L. Anderson; Marc J. Evanchik; Joshua M. Gorham; Brooke C. Harrison; Marcus Henze; Raja Kawas; Johan D. Oslob; Hector Rodriguez; Yonghong Song; William Wan; Leslie A. Leinwand; James A. Spudich; Robert S. McDowell; Jonathan G. Seidman; Christine E. Seidman

Powering down yields a healthier heart In hypertrophic cardiomyopathy (HCM), the heart muscle enlarges and becomes progressively less efficient at pumping blood. HCM can be caused by mutations in components of the sarcomere (the hearts contractile unit), most notably myosin. Hypercontractility is among the earliest heart disturbances seen in mice carrying these myosin mutations, implying that the mutations inflict their damage by increasing myosins power production. Green et al. identified a small molecule that binds to myosin and inhibits its activity (see the Perspective by Warshaw). When orally administered to young mice, the molecule prevented the development of several hallmark features of HCM without adversely affecting skeletal muscle. Science, this issue p. 617; see also p. 556 A small molecule that reduces cardiac muscle contraction prevents a certain type of heart disease in mice. [Also see Perspective by Warshaw] Hypertrophic cardiomyopathy (HCM) is an inherited disease of heart muscle that can be caused by mutations in sarcomere proteins. Clinical diagnosis depends on an abnormal thickening of the heart, but the earliest signs of disease are hyperdynamic contraction and impaired relaxation. Whereas some in vitro studies of power generation by mutant and wild-type sarcomere proteins are consistent with mutant sarcomeres exhibiting enhanced contractile power, others are not. We identified a small molecule, MYK-461, that reduces contractility by decreasing the adenosine triphosphatase activity of the cardiac myosin heavy chain. Here we demonstrate that early, chronic administration of MYK-461 suppresses the development of ventricular hypertrophy, cardiomyocyte disarray, and myocardial fibrosis and attenuates hypertrophic and profibrotic gene expression in mice harboring heterozygous human mutations in the myosin heavy chain. These data indicate that hyperdynamic contraction is essential for HCM pathobiology and that inhibitors of sarcomere contraction may be a valuable therapeutic approach for HCM.


Journal of Molecular and Cellular Cardiology | 2008

Lamin A/C haploinsufficiency causes dilated cardiomyopathy and apoptosis-triggered cardiac conduction system disease

Cordula M. Wolf; Libin Wang; Ronny Alcalai; Anne Pizard; Patrick G. Burgon; Ferhaan Ahmad; Megan C. Sherwood; Dorothy M. Branco; Hiroko Wakimoto; Glenn I. Fishman; Vincent See; Colin L. Stewart; David A. Conner; Charles I. Berul; Christine E. Seidman; Jonathan G. Seidman

Mutations in the lamin A/C (LMNA) gene, which encodes nuclear membrane proteins, cause a variety of human conditions including dilated cardiomyopathy (DCM) with associated cardiac conduction system disease. To investigate mechanisms responsible for electrophysiologic and myocardial phenotypes caused by dominant human LMNA mutations, we performed longitudinal evaluations in heterozygous Lmna(+/-) mice. Despite one normal allele, Lmna(+/-) mice had 50% of normal cardiac lamin A/C levels and developed cardiac abnormalities. Conduction system function was normal in neonatal Lmna(+/-) mice but, by 4 weeks of age, atrioventricular (AV) nodal myocytes had abnormally shaped nuclei and active apoptosis. Telemetric and in vivo electrophysiologic studies in 10-week-old Lmna(+/-) mice showed AV conduction defects and both atrial and ventricular arrhythmias, analogous to those observed in humans with heterozygous LMNA mutations. Isolated myocytes from 12-month-old Lmna(+/-) mice exhibited impaired contractility. In vivo cardiac studies of aged Lmna(+/-) mice revealed DCM; in some mice this occurred without overt conduction system disease. However, neither histopathology nor serum CK levels indicated skeletal muscle pathology. These data demonstrate cardiac pathology due to heterozygous Lmna mutations reflecting a 50% reduction in lamin protein levels. Lamin haploinsufficiency caused early-onset programmed cell death of AV nodal myocytes and progressive electrophysiologic disease. While lamin haploinsufficiency was better tolerated by non-conducting myocytes, ultimately, these too succumbed to diminished lamin levels leading to dilated cardiomyopathy, which presumably arose independently from conduction system disease.


Journal of Clinical Investigation | 2007

Aberrant activation of AMP-activated protein kinase remodels metabolic network in favor of cardiac glycogen storage

Ivan Luptak; Mei Shen; Huamei He; Michael F. Hirshman; Nicolas Musi; Laurie J. Goodyear; Jie Yan; Hiroko Wakimoto; Hiroyuki Morita; Michael Arad; Christine E. Seidman; Jonathan G. Seidman; Joanne S. Ingwall; James A. Balschi; Rong Tian

AMP-activated protein kinase (AMPK) responds to impaired cellular energy status by stimulating substrate metabolism for ATP generation. Mutation of the gamma2 regulatory subunit of AMPK in humans renders the kinase insensitive to energy status and causes glycogen storage cardiomyopathy via unknown mechanisms. Using transgenic mice expressing one of the mutant gamma2 subunits (N488I) in the heart, we found that aberrant high activity of AMPK in the absence of energy deficit caused extensive remodeling of the substrate metabolism pathways to accommodate increases in both glucose uptake and fatty acid oxidation in the hearts of gamma2 mutant mice via distinct, yet synergistic mechanisms resulting in selective fuel storage as glycogen. Increased glucose entry in the gamma2 mutant mouse hearts was directed through the remodeled metabolic network toward glycogen synthesis and, at a substantially higher glycogen level, recycled through the glycogen pool to enter glycolysis. Thus, the metabolic consequences of chronic activation of AMPK in the absence of energy deficiency is distinct from those previously reported during stress conditions. These findings are of particular importance in considering AMPK as a target for the treatment of metabolic diseases.


Cell | 2017

Macrophages Facilitate Electrical Conduction in the Heart

Maarten Hulsmans; Sebastian Clauss; Ling Xiao; Aaron D. Aguirre; Kevin R. King; Alan Hanley; William J. Hucker; Eike M. Wülfers; Gunnar Seemann; Gabriel Courties; Yoshiko Iwamoto; Yuan Sun; Andrej J. Savol; Hendrik B. Sager; Kory J. Lavine; Gregory A. Fishbein; Diane E. Capen; Nicolas Da Silva; Lucile Miquerol; Hiroko Wakimoto; Christine E. Seidman; Jonathan G. Seidman; Ruslan I. Sadreyev; Kamila Naxerova; Richard N. Mitchell; Dennis Brown; Peter Libby; Ralph Weissleder; Filip K. Swirski; Peter Kohl

Organ-specific functions of tissue-resident macrophages in the steady-state heart are unknown. Here, we show that cardiac macrophages facilitate electrical conduction through the distal atrioventricular node, where conducting cells densely intersperse with elongated macrophages expressing connexin 43. When coupled to spontaneously beating cardiomyocytes via connexin-43-containing gap junctions, cardiac macrophages have a negative resting membrane potential and depolarize in synchrony with cardiomyocytes. Conversely, macrophages render the resting membrane potential of cardiomyocytes more positive and, according to computational modeling, accelerate their repolarization. Photostimulation of channelrhodopsin-2-expressing macrophages improves atrioventricular conduction, whereas conditional deletion of connexin 43 in macrophages and congenital lack of macrophages delay atrioventricular conduction. In the Cd11bDTR mouse, macrophage ablation induces progressive atrioventricular block. These observations implicate macrophages in normal and aberrant cardiac conduction.

Collaboration


Dive into the Hiroko Wakimoto's collaboration.

Top Co-Authors

Avatar

Christine E. Seidman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles I. Berul

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin T. Maguire

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge