Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiromi Iwasaki is active.

Publication


Featured researches published by Hiromi Iwasaki.


Nature Genetics | 2004

Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1

Frank Rosenbauer; Katharina Wagner; Jeffery L. Kutok; Hiromi Iwasaki; Michelle M. Le Beau; Yutaka Okuno; Koichi Akashi; Steven Fiering; Daniel G. Tenen

Transcription factors are believed to have a dominant role in acute myeloid leukemia (AML). This idea is supported by analysis of gene-knockout mice, which uncovered crucial roles of several transcription factors in normal hematopoiesis, and of individuals with leukemia, in whom transcription factors are frequently downregulated or mutated. However, analysis of knockout animals has not shown a direct link between abrogated transcription factors and the pathogenesis of AML. Sfpi1, encoding the lineage-specific transcription factor PU.1, is indispensable for normal myeloid and lymphoid development. We found that mice carrying hypomorphic Sfpi1 alleles that reduce PU.1 expression to 20% of normal levels, unlike mice carrying homo- or heterozygous deletions of Sfpi1, developed AML. Unlike complete or 50% loss, 80% loss of PU.1 induced a precancerous state characterized by accumulation of an abnormal precursor pool retaining responsiveness to G-CSF with disruption of M- and GM-CSF pathways. Malignant transformation was associated with a high frequency of clonal chromosomal changes. Retroviral restoration of PU.1 expression rescued myeloid differentiation of mutant progenitors and AML blasts. These results suggest that tightly graded reduction, rather than complete loss, of a lineage-indispensable transcription factor can induce AML.


Developmental Cell | 2002

Myeloid or Lymphoid Promiscuity as a Critical Step in Hematopoietic Lineage Commitment

Toshihiro Miyamoto; Hiromi Iwasaki; Boris Reizis; Min Ye; Thomas Graf; Irving L. Weissman; Koichi Akashi

We demonstrate here that promiscuous expression of myeloid or lymphoid genes precedes lineage commitment in hematopoiesis. Prospectively purified single common myeloid progenitors (CMPs) coexpress myelo-erythroid but not lymphoid genes, whereas single common lymphoid progenitors (CLPs) coexpress T and B lymphoid but not myeloid genes. Genes unrelated to the adopted lineage are downregulated in bipotent and monopotent descendants of CMPs and CLPs. Promiscuous gene expression does not alter the biological potential of multipotent progenitors: CMPs with an activated endogenous M lysozyme locus yield normal proportions of myelo-erythroid colonies, and CLPs expressing the pre-T cell receptor alpha gene differentiate into normal numbers of B cells. Thus, the accessibility for multiple myeloid or lymphoid programs promiscuously may allow flexibility in fate commitments at these multipotent stages.


Cancer Cell | 2002

Critical role for Gab2 in transformation by BCR/ABL

Martin Sattler; M. Golam Mohi; Yuri B. Pride; Laura R Quinnan; Nicole A Malouf; Klaus Podar; Franck Gesbert; Hiromi Iwasaki; Shaoguang Li; Richard A. Van Etten; Haihua Gu; James D. Griffin; Benjamin G. Neel

The BCR/ABL oncogene causes chronic myelogenous leukemia (CML) in humans and a CML-like disease, as well as lymphoid leukemia, in mice. p210 BCR/ABL is an activated tyrosine kinase that phosphorylates itself and several cellular signaling proteins. The autophosphorylation site tyrosine 177 binds the adaptor Grb2 and helps determine the lineage and severity of BCR/ABL disease: Tyr177 mutation (BCR/ABL-Y177F) dramatically impairs myeloid leukemogenesis, while diminishing lymphoid leukemogenesis. The critical signal(s) from Tyr177 has remained unclear. We report that Tyr177 recruits the scaffolding adaptor Gab2 via a Grb2/Gab2 complex. Compared to BCR/ABL-expressing Ba/F3 cells, BCR/ABL-Y177F cells exhibit markedly reduced Gab2 tyrosine phosphorylation and association of phosphatidylinositol-3 kinase (PI3K) and Shp2 with Gab2 and BCR/ABL, and decreased PI3K/Akt and Ras/Erk activation, cell proliferation, and spontaneous migration. Remarkably, bone marrow myeloid progenitors from Gab2 (-/-) mice are resistant to transformation by BCR/ABL, whereas lymphoid transformation is diminished as a consequence of markedly increased apoptosis. BCR/ABL-evoked PI3K/Akt and Ras/Erk activation also are impaired in Gab2 (-/-) primary myeloid and lymphoid cells. Our results identify Gab2 and its associated proteins as key determinants of the lineage and severity of BCR/ABL transformation.


The EMBO Journal | 2007

The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation

Mark W. Feinberg; Akm Khyrul Wara; Zhuoxiao Cao; Maria A. Lebedeva; Frank Rosenbauer; Hiromi Iwasaki; Hideyo Hirai; Jonathan P. Katz; Richard L. Haspel; Susan Gray; Koichi Akashi; Julie Segre; Klaus H. Kaestner; Daniel G. Tenen; Mukesh K. Jain

Monocyte differentiation involves the participation of lineage‐restricted transcription factors, although the mechanisms by which this process occurs are incompletely defined. Within the hematopoietic system, members of the Kruppel‐like family of factors (KLFs) play essential roles in erythrocyte and T lymphocyte development. Here we show that KLF4/GKLF is expressed in a monocyte‐restricted and stage‐specific pattern during myelopoiesis and functions to promote monocyte differentiation. Overexpression of KLF4 in HL‐60 cells confers the characteristics of mature monocytes. Conversely, KLF4 knockdown blocked phorbol ester‐induced monocyte differentiation. Forced expression of KLF4 in primary common myeloid progenitors (CMPs) or hematopoietic stem cells (HSCs) induced exclusive monocyte differentiation in clonogenic assays, whereas KLF4 deficiency inhibited monocyte but increased granulocyte differentiation. Mechanistic studies demonstrate that KLF4 is a target gene of PU.1. Consistently, KLF4 can rescue PU.1–/– fetal liver cells along the monocytic lineage and can activate the monocytic‐specific CD14 promoter. Thus, KLF4 is a critical regulator in the transcriptional network controlling monocyte differentiation.


Nature Genetics | 2006

Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1.

Frank Rosenbauer; Bronwyn M. Owens; Li Yu; Joseph R. Tumang; Ulrich Steidl; Jeffery L. Kutok; Linda K. Clayton; Katharina Wagner; Marina Scheller; Hiromi Iwasaki; Chunhui Liu; Björn Hackanson; Koichi Akashi; Achim Leutz; Thomas L. Rothstein; Christoph Plass; Daniel G. Tenen

Tight regulation of transcription factors, such as PU.1, is crucial for generation of all hematopoietic lineages. We previously reported that mice with a deletion of an upstream regulatory element (URE) of the gene encoding PU.1 (Sfpi1) developed acute myeloid leukemia. Here we show that the URE has an essential role in orchestrating the dynamic PU.1 expression pattern required for lymphoid development and tumor suppression. URE deletion ablated B2 cells but stimulated growth of B1 cells in mice. The URE was a PU.1 enhancer in B cells but a repressor in T cell precursors. TCF transcription factors coordinated this repressor function and linked PU.1 to Wnt signaling. Failure of appropriate PU.1 repression in T cell progenitors with URE deletion disrupted differentiation and induced thymic transformation. Genome-wide DNA methylation assessment showed that epigenetic silencing of selective tumor suppressor genes completed PU.1-initiated transformation of lymphoid progenitors with URE deletion. These results elucidate how a single transcription factor, PU.1, through the cell context–specific activity of a key cis-regulatory element, affects the development of multiple cell lineages and can induce cancer.


Immunity | 2003

GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages

Hiromi Iwasaki; Shin-ichi Mizuno; Richard A. Wells; Alan Cantor; Sumiko Watanabe; Koichi Akashi

GATA-1 is an essential transcription factor for megakaryocyte and erythrocyte (MegE) development. Here we show that hematopoietic progenitors can be reprogrammed by the instructive action of GATA-1. Enforced expression of GATA-1 in hematopoietic stem cells led to loss of self-renewal activity and the exclusive generation of MegE lineages. Strikingly, ectopic GATA-1 reprogrammed common lymphoid progenitors as well as granulocyte/monocyte (GM) progenitors to differentiate into MegE lineages, while inhibiting normal lymphoid or GM differentiation. GATA-1 upregulated critical MegE-related transcription factors such as FOG-1 and GATA-2 in lymphoid and GM progenitors, and their MegE development did not require permissive erythropoietin signals. Furthermore, GATA-1 induced apoptosis of proB and myelomonocytic cells, which could not be prevented by enforced permissive Bcl-2 or myeloid cytokine signals. Thus, GATA-1 specifically instructs MegE commitment while excluding other fate outcomes in stem and progenitor cells, suggesting that regulation of GATA-1 is critical in maintaining multilineage homeostasis.


Immunity | 2003

Hematopoietic stem cells expressing the myeloid lysozyme gene retain long-term, multilineage repopulation potential

Min Ye; Hiromi Iwasaki; Catherine V. Laiosa; Matthias Stadtfeld; Huafeng Xie; Susanne Heck; Björn E. Clausen; Koichi Akashi; Thomas Graf

Single cell PCR studies showed that hematopoietic stem cells (HSCs) express a variety of lineage-affiliated genes. However, it remains unclear whether these cells exhibiting lineage priming represent bona fide stem cells or a subpopulation earmarked for differentiation. Here we have used a Cre-Lox approach to follow the fate of cells expressing a lineage-affiliated marker. We crossed lysozyme Cre mice with yellow fluorescent protein (EYFP) reporter mice and found EYFP gene expression not only in myelomonocytic cells but also in a fraction of HSCs as well as B cells and T cells. Transplantation of EYFP+ HSCs into primary and secondary recipients generated mice in which all hematopoietic cells were EYFP+. In contrast, crosses between CD19 Cre and lck Cre mice with reporter mice showed no EYFP expression in HSCs or intermediate progenitors. Our results demonstrate that lysozyme expression does not mark myeloid commitment and that long-term repopulation potential is maintained in primed HSCs.


Cancer Cell | 2002

Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo

Akira Inoue; Markus G. Seidel; Wen-Shu Wu; Shintaro Kamizono; Adolfo A. Ferrando; Roderick T. Bronson; Hiromi Iwasaki; Koichi Akashi; Akira Morimoto; Johann K. Hitzler; Tamara I. Pestina; Carl W. Jackson; Ryuhei Tanaka; Miriam J. Chong; Peter J. McKinnon; Takeshi Inukai; Gerard Grosveld; A. Thomas Look

We show here that a zinc finger transcriptional repressor, Slug, which is aberrantly upregulated by the E2A-HLF oncoprotein in pro-B cell acute leukemia, functions as an antiapoptotic factor in normal hematopoietic progenitor cells. Slug(-/-) mice were much more radiosensitive than wild-type mice, dying earlier and showing accentuated decreases in peripheral blood cell counts, as well as abundant microhemorrhages and widely disseminated bacterial microabscesses throughout the body. Slug expression was detected in diverse subsets of hematopoietic progenitors, but not in more differentiated B and T lymphoid cells, and there was a significant increase in apoptotic (TUNEL-positive) bone marrow progenitor cells in irradiated Slug(-/-) mice compared to wild-type controls. These results implicate Slug in a novel survival pathway that protects hematopoietic progenitors from apoptosis after DNA damage.


Journal of Experimental Medicine | 2005

Identification of eosinophil lineage–committed progenitors in the murine bone marrow

Hiromi Iwasaki; Shin-ichi Mizuno; Robin Mayfield; Hirokazu Shigematsu; Yojiro Arinobu; Brian Seed; Michael F. Gurish; Kiyoshi Takatsu; Koichi Akashi

Eosinophil lineage–committed progenitors (EoPs) are phenotypically isolatable in the steady-state murine bone marrow. Purified granulocyte/monocyte progenitors (GMPs) gave rise to eosinophils as well as neutrophils and monocytes at the single cell level. Within the short-term culture of GMPs, the eosinophil potential was found exclusively in cells activating the transgenic reporter for GATA-1, a transcription factor capable of instructing eosinophil lineage commitment. These GATA-1–activating cells possessed an IL-5Rα+CD34+c-Kitlo phenotype. Normal bone marrow cells also contained IL-5Rα+CD34+c-Kitlo EoPs that gave rise exclusively to eosinophils. EoPs significantly increased in number in response to helminth infection, suggesting that the EoP stage is physiologically involved in eosinophil production in vivo. EoPs expressed eosinophil-related genes, such as the eosinophil peroxidase and the major basic protein, but did not express basophil/mast cell–related mast cell proteases. The enforced retroviral expression of IL-5Rα in GMPs did not enhance the frequency of eosinophil lineage read-outs, whereas IL-5Rα+ GMPs displayed normal neutrophil/monocyte differentiation in the presence of IL-5 alone. Thus, IL-5Rα might be expressed specifically at the EoP stage as a result of commitment into the eosinophil lineage. The newly identified EoPs could be the cellular target in the treatment of a variety of disorders mediated by eosinophils.


Molecular and Cellular Biology | 2005

Potential Autoregulation of Transcription Factor PU.1 by an Upstream Regulatory Element

Yutaka Okuno; Gang Huang; Frank Rosenbauer; Erica K. Evans; Hanna S. Radomska; Hiromi Iwasaki; Koichi Akashi; Françoise Moreau-Gachelin; Youlin Li; Pu Zhang; Berthold Göttgens; Daniel G. Tenen

ABSTRACT Regulation of the hematopoietic transcription factor PU.1 (Spi-1) plays a critical role in the development of white cells, and abnormal expression of PU.1 can lead to leukemia. We previously reported that the PU.1 promoter cannot induce expression of a reporter gene in vivo, and cell-type-specific expression of PU.1 in stable lines was conferred by a 3.4-kb DNA fragment including a DNase I hypersensitive site located 14 kb upstream of the transcription start site. Here we demonstrate that this kb −14 site confers lineage-specific reporter gene expression in vivo. This kb −14 upstream regulatory element contains two 300-bp regions which are highly conserved in five mammalian species. In Friend virus-induced erythroleukemia, the spleen focus-forming virus integrates into the PU.1 locus between these two conserved regions. DNA binding experiments demonstrated that PU.1 itself and Elf-1 bind to a highly conserved site within the proximal homologous region in vivo. A mutation of this site abolishing binding of PU.1 and Elf-1 led to a marked decrease in the ability of this upstream element to direct activity of reporter gene in myelomonocytic cell lines. These data suggest that a potential positive autoregulatory loop mediated through an upstream regulatory element is essential for proper PU.1 gene expression.

Collaboration


Dive into the Hiromi Iwasaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yojiro Arinobu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jeffery L. Kutok

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Pu Zhang

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge