Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiromi Kato is active.

Publication


Featured researches published by Hiromi Kato.


Journal of the American Chemical Society | 2013

Carbonyl Sulfide Hydrolase from Thiobacillus thioparus Strain THI115 Is One of the β-Carbonic Anhydrase Family Enzymes

Takahiro Ogawa; Keiichi Noguchi; Masahiko Saito; Yoshiko Nagahata; Hiromi Kato; Akashi Ohtaki; Hiroshi Nakayama; Naoshi Dohmae; Yasuhiko Matsushita; Masafumi Odaka; Masafumi Yohda; Hiroshi Nyunoya; Yoko Katayama

Carbonyl sulfide (COS) is an atmospheric trace gas leading to sulfate aerosol formation, thereby participating in the global radiation balance and ozone chemistry, but its biological sinks are not well understood. Thiobacillus thioparus strain THI115 can grow on thiocyanate (SCN(-)) as its sole energy source. Previously, we showed that SCN(-) is first converted to COS by thiocyanate hydrolase in T. thioparus strain THI115. In the present work, we purified, characterized, and determined the crystal structure of carbonyl sulfide hydrolase (COSase), which is responsible for the degradation of COS to H2S and CO2, the second step of SCN(-) assimilation. COSase is a homotetramer composed of a 23.4 kDa subunit containing a zinc ion in its catalytic site. The amino acid sequence of COSase is homologous to the β-class carbonic anhydrases (β-CAs). Although the crystal structure including the catalytic site resembles those of the β-CAs, CO2 hydration activity of COSase is negligible compared to those of the β-CAs. The α5 helix and the extra loop (Gly150-Pro158) near the N-terminus of the α6 helix narrow the substrate pathway, which could be responsible for the substrate specificity. The k(cat)/K(m) value, 9.6 × 10(5) s(-1) M(-1), is comparable to those of the β-CAs. COSase hydrolyzes COS over a wide concentration range, including the ambient level, in vitro and in vivo. COSase and its structurally related enzymes are distributed in the clade D in the phylogenetic tree of β-CAs, suggesting that COSase and its related enzymes are one of the catalysts responsible for the global sink of COS.


DNA Research | 2014

Design and Experimental Application of a Novel Non-Degenerate Universal Primer Set that Amplifies Prokaryotic 16S rRNA Genes with a Low Possibility to Amplify Eukaryotic rRNA Genes

Hiroshi Mori; Fumito Maruyama; Hiromi Kato; Atsushi Toyoda; Ayumi Dozono; Yoshiyuki Ohtsubo; Yuji Nagata; Asao Fujiyama; Masataka Tsuda; Ken Kurokawa

The deep sequencing of 16S rRNA genes amplified by universal primers has revolutionized our understanding of microbial communities by allowing the characterization of the diversity of the uncultured majority. However, some universal primers also amplify eukaryotic rRNA genes, leading to a decrease in the efficiency of sequencing of prokaryotic 16S rRNA genes with possible mischaracterization of the diversity in the microbial community. In this study, we compared 16S rRNA gene sequences from genome-sequenced strains and identified candidates for non-degenerate universal primers that could be used for the amplification of prokaryotic 16S rRNA genes. The 50 identified candidates were investigated to calculate their coverage for prokaryotic and eukaryotic rRNA genes, including those from uncultured taxa and eukaryotic organelles, and a novel universal primer set, 342F-806R, covering many prokaryotic, but not eukaryotic, rRNA genes was identified. This primer set was validated by the amplification of 16S rRNA genes from a soil metagenomic sample and subsequent pyrosequencing using the Roche 454 platform. The same sample was also used for pyrosequencing of the amplicons by employing a commonly used primer set, 338F-533R, and for shotgun metagenomic sequencing using the Illumina platform. Our comparison of the taxonomic compositions inferred by the three sequencing experiments indicated that the non-degenerate 342F-806R primer set can characterize the taxonomic composition of the microbial community without substantial bias, and is highly expected to be applicable to the analysis of a wide variety of microbial communities.


Microbiology | 2008

Degradation of ambient carbonyl sulfide by Mycobacterium spp. in soil

Hiromi Kato; Masahiko Saito; Yoshiko Nagahata; Yoko Katayama

The ability to degrade carbonyl sulfide (COS) was confirmed in seven bacterial strains that were isolated from soil, without the addition of COS. Comparative 16S rRNA gene sequence analysis indicated that these isolates belonged to the genera Mycobacterium, Williamsia and Cupriavidus. For example, Mycobacterium sp. strain THI401, grown on PYG agar medium, was able to degrade an initial level of 30 parts per million by volume COS within 1 h, while 60 % of the initial COS was decreased by abiotic conversion in 30 h. Considering natural COS flux between soil and the atmosphere, COS degradation by these bacteria was confirmed at an ambient level of 500 parts per trillion by volume (p.p.t.v.), using sterilized soil to cultivate the bacterium. Autoclave sterilization of soil resulted in a small amount of COS emission, while Mycobacterium spp. degraded COS at a faster rate than it was emitted from the soil, and reduced the COS mixing ratio to a level that was lower than the ambient level: THI401 degraded COS from an initial level of 530 p.p.t.v. to a level of 330 p.p.t.v. in 30 h. These results provide experimental evidence of microbial activity in soil as a sink for atmospheric COS.


DNA Research | 2015

Time-series metagenomic analysis reveals robustness of soil microbiome against chemical disturbance.

Hiromi Kato; Hiroshi Mori; Fumito Maruyama; Atsushi Toyoda; Kenshiro Oshima; Ryo Endo; Genki Fuchu; Masatoshi Miyakoshi; Ayumi Dozono; Yoshiyuki Ohtsubo; Yuji Nagata; Masahira Hattori; Asao Fujiyama; Ken Kurokawa; Masataka Tsuda

Soil microbial communities have great potential for bioremediation of recalcitrant aromatic compounds. However, it is unclear which taxa and genes in the communities, and how they contribute to the bioremediation in the polluted soils. To get clues about this fundamental question here, time-course (up to 24 weeks) metagenomic analysis of microbial community in a closed soil microcosm artificially polluted with four aromatic compounds, including phenanthrene, was conducted to investigate the changes in the community structures and gene pools. The pollution led to drastic changes in the community structures and the gene sets for pollutant degradation. Complete degradation of phenanthrene was strongly suggested to occur by the syntrophic metabolism by Mycobacterium and the most proliferating genus, Burkholderia. The community structure at Week 24 (∼12 weeks after disappearance of the pollutants) returned to the structure similar to that before pollution. Our time-course metagenomic analysis of phage genes strongly suggested the involvement of the ‘kill-the-winner’ phenomenon (i.e. phage predation of Burkholderia cells) for the returning of the microbial community structure. The pollution resulted in a decrease in taxonomic diversity and a drastic increase in diversity of gene pools in the communities, showing the functional redundancy and robustness of the communities against chemical disturbance.


Applied Microbiology and Biotechnology | 2015

Isolation of oxygenase genes for indigo-forming activity from an artificially polluted soil metagenome by functional screening using Pseudomonas putida strains as hosts

Hirofumi Nagayama; Tomonori Sugawara; Ryo Endo; Akira Ono; Hiromi Kato; Yoshiyuki Ohtsubo; Yuji Nagata; Masataka Tsuda

Metagenomes contain the DNA from many microorganisms, both culturable and non-culturable, and are a potential resource of novel genes. In this study, a 5.2-Gb metagenomic DNA library was constructed from a soil sample (artificially polluted with four aromatic compounds, i.e., biphenyl, phenanthrene, carbazole, and 3-chlorobenzoate) in Escherichia coli by using a broad-host-range cosmid vector. The resultant library was introduced into naphthalene-degrading Pseudomonas putida-derived strains having deficiencies in their naphthalene dioxygenase components, and indigo-forming clones on the indole-containing agar plates were screened. Cosmids isolated from 29 positive clones were classified by their various properties (original screening hosts, hosts showing indigo-forming activity, and digestion patterns with restriction enzymes), and six representative cosmids were chosen. Sequencing and in vitro transposon mutagenesis of the six cosmids resulted in the identification of genes encoding putative class B and D flavoprotein monooxygenases, a multicomponent hydroxylase, and a reductase that were responsible for the indigo-forming activity in the host cells. Among them, the genes encoding the multicomponent hydroxylase were demonstrated to be involved in phenol degradation. Furthermore, two genes encoding ring-cleavage dioxygenases were also found adjacent to the genes responsible for the indigo formation, and their functions were experimentally confirmed.


DNA Research | 2016

Comparison of the complete genome sequences of four γ-hexachlorocyclohexane-degrading bacterial strains: insights into the evolution of bacteria able to degrade a recalcitrant man-made pesticide

Michiro Tabata; Satoshi Ohhata; Yuki Nikawadori; Kouhei Kishida; Takuya Sato; Toru Kawasumi; Hiromi Kato; Yoshiyuki Ohtsubo; Masataka Tsuda; Yuji Nagata

γ-Hexachlorocyclohexane (γ-HCH) is a recalcitrant man-made chlorinated pesticide. Here, the complete genome sequences of four γ-HCH-degrading sphingomonad strains, which are most unlikely to have been derived from one ancestral γ-HCH degrader, were compared. Together with several experimental data, we showed that (i) all the four strains carry almost identical linA to linE genes for the conversion of γ-HCH to maleylacetate (designated “specific” lin genes), (ii) considerably different genes are used for the metabolism of maleylacetate in one of the four strains, and (iii) the linKLMN genes for the putative ABC transporter necessary for γ-HCH utilization exhibit structural divergence, which reflects the phylogenetic relationship of their hosts. Replicon organization and location of the lin genes in the four genomes are significantly different with one another, and that most of the specific lin genes are located on multiple sphingomonad-unique plasmids. Copies of IS6100, the most abundant insertion sequence in the four strains, are often located in close proximity to the specific lin genes. Analysis of the footprints of target duplication upon IS6100 transposition and the experimental detection of IS6100 transposition strongly suggested that the IS6100 transposition has caused dynamic genome rearrangements and the diversification of lin-flanking regions in the four strains.


Environmental Science & Technology | 2016

Sulfur Isotopic Fractionation of Carbonyl Sulfide during Degradation by Soil Bacteria.

Kazuki Kamezaki; Shohei Hattori; Takahiro Ogawa; Sakae Toyoda; Hiromi Kato; Yoko Katayama; Naohiro Yoshida

We performed laboratory incubation experiments on the degradation of gaseous phase carbonyl sulfide (OCS) by soil bacteria to determine its sulfur isotopic fractionation constants ((34)ε). Incubation experiments were conducted using strains belonging to the genera Mycobacterium, Williamsia, and Cupriavidus isolated from natural soil environments. The (34)ε values determined were -3.67 ± 0.33‰, -3.99 ± 0.19‰, -3.57 ± 0.22‰, and -3.56 ± 0.23‰ for Mycobacterium spp. strains THI401, THI402, THI404, and THI405; -3.74 ± 0.29‰ for Williamsia sp. strain THI410; and -2.09 ± 0.07‰ and -2.38 ± 0.35‰ for Cupriavidus spp. strains THI414 and THI415. Although OCS degradation rates divided by cell numbers (cell-specific activity) were different among strains of the same genus, the (34)ε values for same genus showed no significant differences. Even though the numbers of bacterial species examined were limited, our results suggest that (34)ε values for OCS bacterial degradation depend not on cell-specific activities, but on genus-level biological differences, suggesting that (34)ε values are dependent on enzymatic and/or membrane properties. Taking our (34)ε values as representative for bacterial OCS degradation, the expected atmospheric changes in δ(34)S values of OCS range from 0.5‰ to 0.9‰, based on previously reported decreases in OCS concentrations at Mt. Fuji, Japan. Consequently, tropospheric observation of δ(34)S values for OCS coupled with (34)ε values for OCS bacterial degradation can potentially be used to investigate soil as an OCS sink.


Genome Announcements | 2015

Complete Genome Sequence of a Phenanthrene Degrader, Mycobacterium sp. Strain EPa45 (NBRC 110737), Isolated from a Phenanthrene-Degrading Consortium

Hiromi Kato; Natsumi Ogawa; Yoshiyuki Ohtsubo; Kenshiro Oshima; Atsushi Toyoda; Hiroshi Mori; Yuji Nagata; Ken Kurokawa; Masahira Hattori; Asao Fujiyama; Masataka Tsuda

ABSTRACT A phenanthrene degrader, Mycobacterium sp. EPa45, was isolated from a phenanthrene-degrading consortium. Here, we report the complete genome sequence of EPa45, which has a 6.2-Mb single circular chromosome. We propose a phenanthrene degradation pathway in EPa45 based on the complete genome sequence.


Genome Announcements | 2015

Complete Genome Sequence of a Phenanthrene Degrader, Burkholderia sp. HB-1 (NBRC 110738)

Yoshiyuki Ohtsubo; Azusa Moriya; Hiromi Kato; Natsumi Ogawa; Yuji Nagata; Masataka Tsuda

ABSTRACT The phenanthrene-degrading Burkholderia sp. HB-1 was isolated from a phenanthrene-enrichment culture seeded with a pristine farm soil sample. We report the complete genome sequence of HB-1, which has been deposited to the stock culture (NBRC 110738) at Biological Resource Center, National Institute of Technology and Evaluation (NITE), Tokyo, Japan. The genome of strain HB-1 comprises two circular chromosomes of 4.1 Mb and 3.1 Mb. The finishing was facilitated by the computational tools GenoFinisher, AceFileViewer, and ShortReadManager.


Bioscience, Biotechnology, and Biochemistry | 2018

Establishment of plasmid vector and allelic exchange mutagenesis systems in a mycobacterial strain that is able to degrade polycyclic aromatic hydrocarbon

Kouhei Kishida; Natsumi Ogawa; Eikichi Ichihashi; Hiromi Kato; Yuji Nagata; Yoshiyuki Ohtsubo; Masataka Tsuda

Abstract Plasmid vector and allelic exchange mutagenesis systems were established for the genetic analysis of a phenanthrene-degrading mycobacterial strain, Mycobacterium sp. EPa45. Successful application of these systems revealed the necessity of the EPa45 phdI gene for the degradation of 1-hydroxy-2-naphthoate, which has been proposed to be an intermediate product in the degradation pathway of phenanthrene.

Collaboration


Dive into the Hiromi Kato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takahiro Ogawa

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuki Kamezaki

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Naohiro Yoshida

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Shohei Hattori

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Asao Fujiyama

National Institute of Genetics

View shared research outputs
Researchain Logo
Decentralizing Knowledge