Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiromi Maekawa is active.

Publication


Featured researches published by Hiromi Maekawa.


Yeast | 2004

A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes.

Carsten Janke; Maria M. Magiera; Nicole Rathfelder; Christof Taxis; Simone Reber; Hiromi Maekawa; Alexandra C. Moreno-Borchart; Georg Doenges; Etienne Schwob; Elmar Schiebel; Michael Knop

Tagging of genes by chromosomal integration of PCR amplified cassettes is a widely used and fast method to label proteins in vivo in the yeast Saccharomyces cerevisiae. This strategy directs the amplified tags to the desired chromosomal loci due to flanking homologous sequences provided by the PCR‐primers, thus enabling the selective introduction of any sequence at any place of a gene, e.g. for the generation of C‐terminal tagged genes or for the exchange of the promoter and N‐terminal tagging of a gene. To make this method most powerful we constructed a series of 76 novel cassettes, containing a broad variety of C‐terminal epitope tags as well as nine different promoter substitutions in combination with N‐terminal tags. Furthermore, new selection markers have been introduced. The tags include the so far brightest and most yeast‐optimized version of the red fluorescent protein, called RedStar2, as well as all other commonly used fluorescent proteins and tags used for the detection and purification of proteins and protein complexes. Using the provided cassettes for N‐ and C‐terminal gene tagging or for deletion of any given gene, a set of only four primers is required, which makes this method very cost‐effective and reproducible. This new toolbox should help to speed up the analysis of gene function in yeast, on the level of single genes, as well as in systematic approaches. Copyright


The EMBO Journal | 2003

Yeast Cdk1 translocates to the plus end of cytoplasmic microtubules to regulate bud cortex interactions

Hiromi Maekawa; Takeo Usui; Michael Knop; Elmar Schiebel

The budding yeast spindle aligns along the mother–bud axis through interactions between cytoplasmic microtubules (CMs) and the cell cortex. Kar9, in complex with the EB1‐related protein Bim1, mediates contacts of CMs with the cortex of the daughter cell, the bud. Here we established a novel series of events that target Kar9 to the bud cortex. First, Kar9 binds to spindle pole bodies (SPBs) in G1 of the cell cycle. Secondly, in G1/S the yeast Cdk1, Cdc28, associates with SPBs and phosphorylates Kar9. Thirdly, Kar9 and Cdc28 then move from the SPB to the plus end of CMs directed towards the bud. This movement is dependent upon the microtubule motor protein Kip2. Cdc28 activity is required to concentrate Kar9 at the plus end of CMs and hence to establish contacts with the bud cortex. The Cdc28‐regulated localization of Kar9 is therefore an integral part of the program that aligns spindles.


The EMBO Journal | 2003

The XMAP215 homologue Stu2 at yeast spindle pole bodies regulates microtubule dynamics and anchorage

Takeo Usui; Hiromi Maekawa; Gislene Pereira; Elmar Schiebel

The yeast protein Stu2 belongs to the XMAP215 family of conserved microtubule‐binding proteins which regulate microtubule plus end dynamics. XMAP215‐related proteins also bind to centrosomes and spindle pole bodies (SPBs) through proteins like the mammalian transforming acidic coiled coil protein TACC or the yeast Spc72. We show that yeast Spc72 has two distinct domains involved in microtubule organization. The essential 100 N‐terminal amino acids of Spc72 interact directly with the γ‐tubulin complex, and an adjacent non‐essential domain of Spc72 mediates binding to Stu2. Through these domains, Spc72 brings Stu2 and the γ‐tubulin complex together into a single complex. Manipulation of Spc72–Stu2 interaction at SPBs compromises the anchorage of astral microtubules at the SPB and surprisingly also influences the dynamics of microtubule plus ends. Permanently tethering Stu2 to SPBs by fusing it to a version of Spc72 that lacks the Stu2‐binding site in part complements these defects in a manner which is dependent upon the microtubule‐binding domain of Stu2. Thus, the SPB‐associated Spc72–Stu2 complex plays a key role in regulating microtubule properties.


Journal of Cell Biology | 2010

Mutual regulation of cyclin-dependent kinase and the mitotic exit network

Cornelia König; Hiromi Maekawa; Elmar Schiebel

Although MEN activity in daughter cells is regulated by the Bfa–Bub1 GAP complex, Cdk1 takes over the job at the mother spindle pole body.


PLOS Genetics | 2014

Inversion of the Chromosomal Region between Two Mating Type Loci Switches the Mating Type in Hansenula polymorpha

Hiromi Maekawa; Yoshinobu Kaneko

Yeast mating type is determined by the genotype at the mating type locus (MAT). In homothallic (self-fertile) Saccharomycotina such as Saccharomyces cerevisiae and Kluveromyces lactis, high-efficiency switching between a and α mating types enables mating. Two silent mating type cassettes, in addition to an active MAT locus, are essential components of the mating type switching mechanism. In this study, we investigated the structure and functions of mating type genes in H. polymorpha (also designated as Ogataea polymorpha). The H. polymorpha genome was found to harbor two MAT loci, MAT1 and MAT2, that are ∼18 kb apart on the same chromosome. MAT1-encoded α1 specifies α cell identity, whereas none of the mating type genes were required for a identity and mating. MAT1-encoded α2 and MAT2-encoded a1 were, however, essential for meiosis. When present in the location next to SLA2 and SUI1 genes, MAT1 or MAT2 was transcriptionally active, while the other was repressed. An inversion of the MAT intervening region was induced by nutrient limitation, resulting in the swapping of the chromosomal locations of two MAT loci, and hence switching of mating type identity. Inversion-deficient mutants exhibited severe defects only in mating with each other, suggesting that this inversion is the mechanism of mating type switching and homothallism. This chromosomal inversion-based mechanism represents a novel form of mating type switching that requires only two MAT loci.


Scientific Reports | 2017

Regulation of mating type switching by the mating type genes and RME1 in Ogataea polymorpha

Katsuyoshi Yamamoto; Thi N. M. Tran; Kaoru Takegawa; Yoshinobu Kaneko; Hiromi Maekawa

Saccharomyces cerevisiae and its closely related yeasts undergo mating type switching by replacing DNA sequences at the active mating type locus (MAT) with one of two silent mating type cassettes. Recently, a novel mode of mating type switching was reported in methylotrophic yeast, including Ogataea polymorpha, which utilizes chromosomal recombination between inverted-repeat sequences flanking two MAT loci. The inversion is highly regulated and occurs only when two requirements are met: haploidy and nutritional starvation. However, links between this information and the mechanism associated with mating type switching are not understood. Here we investigated the roles of transcription factors involved in yeast sexual development, such as mating type genes and the conserved zinc finger protein Rme1. We found that co-presence of mating type a1 and α2 genes was sufficient to prevent mating type switching, suggesting that ploidy information resides solely in the mating type locus. Additionally, RME1 deletion resulted in a reduced rate of switching, and ectopic expression of O. polymorpha RME1 overrode the requirement for starvation to induce MAT inversion. These results suggested that mating type switching in O. polymorpha is likely regulated by two distinct transcriptional programs that are linked to the ploidy and transmission of the starvation signal.


Journal of Bioscience and Bioengineering | 2015

Nuclear localization domains of GATA activator Gln3 are required for transcription of target genes through dephosphorylation in Saccharomyces cerevisiae

Minori Numamoto; Shota Tagami; Yusuke Ueda; Yusuke Imabeppu; Yu Sasano; Minetaka Sugiyama; Hiromi Maekawa; Satoshi Harashima

The GATA transcription activator Gln3 in the budding yeast (Saccharomyces cerevisiae) activates transcription of nitrogen catabolite repression (NCR)-sensitive genes. In cells grown in the presence of preferred nitrogen sources, Gln3 is phosphorylated in a TOR-dependent manner and localizes in the cytoplasm. In cells grown in non-preferred nitrogen medium or treated with rapamycin, Gln3 is dephosphorylated and is transported from the cytoplasm to the nucleus, thereby activating the transcription of NCR-sensitive genes. Caffeine treatment also induces dephosphorylation of Gln3 and its translocation to the nucleus and transcription of NCR-sensitive genes. However, the details of the mechanism by which phosphorylation controls Gln3 localization and transcriptional activity are unknown. Here, we focused on two regions of Gln3 with nuclear localization signal properties (NLS-K, and NLS-C) and one with nuclear export signal (NES). We constructed various mutants for our analyses: gln3 containing point mutations in all potential phosphoacceptor sites (Thr-339, Ser-344, Ser-347, Ser-355, Ser-391) in the NLS and NES regions to produce non-phosphorylatable (alanine) or mimic-phosphorylatable (aspartic acid) residues; and deletion mutants. We found that phosphorylation of Gln3 was impaired in all of these mutations and that the aspartic acid substitution mutants showed drastic reduction of Gln3-mediated transcriptional activity despite the fact that the mutations had no effect on nuclear localization of Gln3. Our observations suggest that these regions are required for transcription of target genes presumably through dephosphorylation.


Journal of Biochemistry | 2015

The protein phosphatase Siw14 controls caffeine-induced nuclear localization and phosphorylation of Gln3 via the type 2A protein phosphatases Pph21 and Pph22 in Saccharomyces cerevisiae

Minori Numamoto; Yu Sasano; Masataka Hirasaki; Minetaka Sugiyama; Hiromi Maekawa; Satoshi Harashima

The Saccharomyces cerevisiae Siw14, a tyrosine phosphatase involved in the response to caffeine, participates in regulation of the phosphorylation and intracellular localization of Gln3, a GATA transcriptional activator of nitrogen catabolite repression-sensitive genes. In Δsiw14 cells, the phosphorylation level of Gln3 is decreased and the nuclear localization of Gln3 is stimulated by caffeine. However, the mechanism by which Siw14 controls the localization and function of Gln3 remains unclear, although the nuclear localization of Gln3 is known to be induced by activation of the type 2A phosphatases (PP2As) Pph21 and Pph22, and the type 2A-related phosphatase Sit4. In this study, we show that the increased nuclear localization of Gln3 in response to caffeine caused by disruption of the SIW14 gene is dependent on the Sit4 and PP2A phosphatases. We also show that decreased phosphorylation of Gln3 caused by disruption of the SIW14 gene is completely suppressed by deletion of both PPH21 and PPH22, but only partially suppressed by deletion of SIT4. Taking these results together, we conclude that Siw14 functions upstream of Pph21 and Pph22 as an inhibitor of the phosphorylation and localization of Gln3, and that Sit4 acts independently of Siw14.


eLife | 2017

Polo-like kinase Cdc5 regulates Spc72 recruitment to spindle pole body in the methylotrophic yeast ogataea polymorpha

Hiromi Maekawa; Annett Neuner; Diana Rüthnick; Elmar Schiebel; Gislene Pereira; Yoshinobu Kaneko

Cytoplasmic microtubules (cMT) control mitotic spindle positioning in many organisms, and are therefore pivotal for successful cell division. Despite its importance, the temporal control of cMT formation remains poorly understood. Here we show that unlike the best-studied yeast Saccharomyces cerevisiae, position of pre-anaphase nucleus is not strongly biased toward bud neck in Ogataea polymorpha and the regulation of spindle positioning becomes active only shortly before anaphase. This is likely due to the unstable property of cMTs compared to those in S. cerevisiae. Furthermore, we show that cMT nucleation/anchoring is restricted at the level of recruitment of the γ-tubulin complex receptor, Spc72, to spindle pole body (SPB), which is regulated by the polo-like kinase Cdc5. Additionally, electron microscopy revealed that the cytoplasmic side of SPB is structurally different between G1 and anaphase. Thus, polo-like kinase dependent recruitment of γ-tubulin receptor to SPBs determines the timing of spindle orientation in O. polymorpha.


Journal of Cell Biology | 2007

The yeast centrosome translates the positional information of the anaphase spindle into a cell cycle signal

Hiromi Maekawa; Claire Priest; Johannes Lechner; Gislene Pereira; Elmar Schiebel

Collaboration


Dive into the Hiromi Maekawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gislene Pereira

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge