Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiromori Akagi is active.

Publication


Featured researches published by Hiromori Akagi.


Theoretical and Applied Genetics | 1996

Microsatellite DNA markers for rice chromosomes

Hiromori Akagi; Y. Yokozeki; A. Inagaki; Tatsuhito Fujimura

We found 369 complete microsatellites, of which (CGG/GCC)n was the most frequent, in 11 798 rice sequences in the database. Of these microsatellites, 35 out of 45 could be successfully converted into microsatellite DNA markers using sequence information in their flanking regions. Thus, the time and labor used to develop new microsatellite DNA markers could be saved by using these published sequences. Twenty eight polymorphic markers between Asominori (japonica) and IR24 (indica) have been correctly mapped on the rice genome and microsatellites appear to be randomly distributed in the rice chromosomes. Integration of these markers with the published microsatellite DNA markers showed that about 35% of the rice chromosomes were covered by the 56 microsatellite DNA markers. These microsatellites were hypervariable and were easily to assay by PCR; they were distributed to all chromosomes and therefore, one can easily select plants carrying desired chromosome regions using these microsatellite DNA markers. Thus, microsatellite maps should aid the development of new breeds of rice saving time, labor, and money.


New Phytologist | 2011

OsHMA3, a P1B‐type of ATPase affects root‐to‐shoot cadmium translocation in rice by mediating efflux into vacuoles

Saki Adachi; Aya Hiraizumi; Kouichi Tezuka; Nobushige Nakazawa; Tomohiko Kawamoto; Kazunao Katou; Ikuko Kodama; Kenji Sakurai; Hidekazu Takahashi; Namiko Satoh-Nagasawa; Akio Watanabe; Tatsuhito Fujimura; Hiromori Akagi

• The cadmium (Cd) over-accumulating rice (Oryza sativa) cv Cho-Ko-Koku was previously shown to have an enhanced rate of root-to-shoot Cd translocation. This trait is controlled by a single recessive allele located at qCdT7. • In this study, using positional cloning and transgenic strategies, heavy metal ATPase 3 (OsHMA3) was identified as the gene that controls root-to-shoot Cd translocation rates. The subcellular localization and Cd-transporting activity of the gene products were also investigated. • The allele of OsHMA3 that confers high root-to-shoot Cd translocation rates (OsHMA3mc) encodes a defective P(1B) -ATPase transporter. OsHMA3 fused to green fluorescent protein was localized to vacuolar membranes in plants and yeast. An OsHMA3 transgene complemented Cd sensitivity in a yeast mutant that lacks the ability to transport Cd into vacuoles. By contrast, OsHMA3mc did not complement the Cd sensitivity of this yeast mutant, indicating that the OsHMA3mc transport function was lost. • We propose that the root cell cytoplasm of Cd-overaccumulating rice plants has more Cd available for loading into the xylem as a result of the lack of OsHMA3-mediated transportation of Cd to the vacuoles. This defect results in Cd translocation to the shoots in higher concentrations. These data demonstrate the importance of vacuolar sequestration for Cd accumulation in rice.


Theoretical and Applied Genetics | 2004

Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein

Hiromori Akagi; A. Nakamura; Y. Yokozeki-Misono; A. Inagaki; Hidekazu Takahashi; K. Mori; Tatsuhito Fujimura

The combination of cytoplasmic male sterility (CMS) in one parent and a restorer gene (Rf) to restore fertility in another are indispensable for the development of hybrid varieties. We have found a rice Rf-1 gene that restores BT-type CMS by applying a positional cloning strategy. Using linkage analysis in combination with 6,104 BC1F3 progeny derived from a cross between two near-isogenic lines (NILs) differing only at the Rf-1 locus, we delimited the Rf-1 gene to a 22.4-kb region in the rice genome. Duplicate open reading frames (Rf-1A and Rf-1B) with a pentatricopeptide (PPR) motif were found in this region. Since several insertions and/or deletions were found in the regions corresponding to both the Rf-1A and Rf-1B genes in the maintainer’s allele, they may have lost their function. Rf-1A protein had a mitochondria-targeting signal, whereas Rf-1B did not. The Rf-1B gene encoded a shorter polypeptide that was determined by a premature stop codon. Based on the function of the Rf-1 gene, its product is expected to target mitochondria and may process the transcript from an atp6/orf79 region in the mitochondrial genome. Since the Rf-1A gene encodes a 791-amino acid protein with a signal targeting mitochondria and has 16 repeats of the PPR motif, we concluded that Rf-1A is the Rf-1 gene. Nine duplications of Rf-1A homologs were found around the Rf-1 locus in the Nipponbare genome. However, while some of them encoded proteins with the PPR motif, they do not restore BT-type CMS based on the lack of co-segregation with the restoration phenotype. These duplicates may have played diversified roles in RNA processing and/or recombination in mitochondria during the co-evolution of these genes and the mitochondrial genome.


Theoretical and Applied Genetics | 1997

Highly polymorphic microsatellites of rice consist of AT repeats, and a classification of closely related cultivars with these microsatellite loci

Hiromori Akagi; Y. Yokozeki; A. Inagaki; Tatsuhito Fujimura

Microsatellites consisting of AT repeats are highly polymorphic in rice genomes and can be used to distinguish between even closely related japonica cultivars in Japan. Polymorphisms of 20 microsatellite loci were determined using 59 japonica cultivars, including both domestic and modern Japanese cultivars. Although the polymorphisms of these 20 microsatellite loci indicated that the Japanese cultivars were genetically quite similar, microsatellites consisting of AT repeats showed high gene diversity even among such closely related cultivars. Combinations of these hypervariable microsatellites can be employed to classify individual cultivars, since the microsatellites were stable within each cultivar. An identification system based on these highly polymorphic microsatellites could be used to maintain the purity of rice seeds by eliminating contamination. A parentage diagnosis using 17 polymorphic microsatellite loci clearly demonstrated that plants which carried desired chromosome regions had been selected in breeding programs. Thus, these hypervariable microsatellites consisting of AT repeats should promote the selection of plants which carry desired chromosomes from genetically similar parents. Backcrossing could also help to eliminate unnecessary chromosome regions with microsatellite polymorphisms at an early stage in breeding programs.


Plant and Cell Physiology | 2012

Mutations in Rice (Oryza sativa) Heavy Metal ATPase 2 (OsHMA2) Restrict the Translocation of Zinc and Cadmium

Namiko Satoh-Nagasawa; Mikako Mori; Nobushige Nakazawa; Tomohiko Kawamoto; Yasuo Nagato; Kenji Sakurai; Hidekazu Takahashi; Akio Watanabe; Hiromori Akagi

Widespread soil contamination with heavy metals has fostered the need for plant breeders to develop new crops that do not accumulate heavy metals. Metal-transporting transmembrane proteins that transport heavy metals across the plant plasma membrane are key targets for developing these new crops. Oryza sativa heavy metal ATPase 3 (OsHMA3) is known to be a useful gene for limiting cadmium (Cd) accumulation in rice. OsHMA2 is a close homolog of OsHMA3, but the function of OsHMA2 is unknown. To gain insight into the function of OsHMA2, we analyzed three Tos17 insertion mutants. The translocation ratios of zinc (Zn) and Cd were clearly lower in all mutants than in the wild type, suggesting that OsHMA2 is a major transporter of Zn and Cd from roots to shoots. By comparing each allele in the OsHMA2 protein structure and measuring the Cd translocation ratio, we identified the C-terminal region as essential for Cd translocation into shoots. Two alleles were identified as good material for breeding rice that does not contain Cd in the grain but does contain some Zn, and that grows normally.


Current Genetics | 1994

A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility

Hiromori Akagi; Masahiro Sakamoto; Chou Shinjyo; Hiroaki Shimada; Tatsuhito Fujimura

Asymmetric cell-fusion of the japonica cultivar ofOryza sativa (rice) with cytoplasmic-male-sterile (CMS) plants bearing cytoplasm derived from Chinsurah Boro II, resulted in two classes of cytoplasmic hybrids (cybrids), fertile and CMS. Southern-blot analysis of the mitochondrial DNA (mtDNA) indicates recombination events around a number of genes; however, the appearance of the CMS character is tightly correlated to reorganization around theatp6 gene, suggesting recombination downstream from theatp6 gene is involved in CMS. The nucleotide sequence downstream fromatp6 contains a pseudogene which was probably created by recombination of the mitochondrial genome. Sense and antisense transcripts of the downstream region ofatp6 were found in CMS-and restored CMS (fertile)-lines, but not in the normal (fertile) line. In the CMS line, several antisense transcripts of theatp6 gene were also found. However, in the restored line which contains a nuclear-encoded gene,Rf-1, the levels of these transcripts were lower than in the CMS line. These results suggest abnormal transcripts of theatp6 gene produced in the antisense direction may be involved in CMS, and that products of the nuclear-encoded restorer gene may reduce abnormal transcription in this region of the mitochondrial genome.


Planta | 2000

Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme

Yuu Takeuchi; Hiromori Akagi; Naomi Kamasawa; Masako Osumi; Hideo Honda

Abstract. NADP-dependent malic enzyme (NADP-ME) is a major decarboxylating enzyme in NADP-ME-type C4 species such as maize and Flaveria. In this study, chloroplastic NADP-ME was transferred to rice (Oryza sativa L.) using a chimeric gene composed of maize NADP-ME cDNA under the control of rice light-harvesting chlorophyll-a/b-binding protein (Cab) promoter. There was a 20- to 70-fold increase in the NADP-ME activity in leaves of transgenic rice compared to that in wild-type rice plants. Immunocytochemical studies by electron microscopy showed that maize NADP-ME was mostly localized in chloroplasts in transgenic rice plants, and that the chloroplasts were agranal without thylakoid stacking. Chlorophyll content and photosystem II activity were inversely correlated with the level of NADP-ME activity. These results suggest that aberrant chloroplasts in transgenic plants may be caused by excessive NADP-ME activity. Based on these results and the known fact that only bundle sheath cells of NADP-ME species, among all three C4 subgroups, have agranal chloroplasts, we postulate that a high level of chloroplastic NADP-ME activity could strongly affect the development of chloroplasts.


Plant Molecular Biology | 1999

Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats.

Koji Sakamoto; Yuichi Tada; Yumi Yokozeki; Hiromori Akagi; Nagao Hayashi; Tatsuhito Fujimura; Norio Ichikawa

Probenazole (3-allyloxy-1,2-benzisothiazole-1,1-dioxide) is an agricultural chemical primarily used to prevent rice blast disease. Probenazole-treated rice acquires resistance to blast fungus irrespective of the rice variety. The chemical is applied prophylactically, and is thought to induce or bolster endogenous plant defenses. However, the mechanisms underlying this effect have not been established. To understand the mode of the chemicals action, we screened for novel probenazole-responsive genes in rice by means of differential display and identified a candidate gene, RPR1. RPR1 contains a nucleotide binding site and leucine-rich repeats, thus sharing structural similarity with known disease resistance genes. The expression of RPR1 in rice can be up-regulated by treatment with chemical inducers of systemic acquired resistance (SAR) and by inoculation with pathogens. RPR1-related sequences in rice varieties seem to be varied in sequence and/or expression, indicating that RPR1 itself is not a crucial factor for induced resistance in rice. However, Southern blot analysis revealed the existence of homologous sequences in all varieties examined. While the role of RPR1 has yet to be clarified, this is the first report of the identification of a member of this gene class and its induction during the systemic expression of induced disease resistance.


Theoretical and Applied Genetics | 2010

A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku

Kouichi Tezuka; Kazunao Katou; Ikuko Kodama; Shinichi Matsumoto; Tomohiko Kawamoto; Satoshi Masaki; Hideki Satoh; Masayuki Yamaguchi; Kenji Sakurai; Hidekazu Takahashi; Namiko Satoh-Nagasawa; Akio Watanabe; Tatsuhito Fujimura; Hiromori Akagi

The heavy metal cadmium (Cd) is highly toxic to humans and can enter food chains from contaminated crop fields. Understanding the molecular mechanisms of Cd accumulation in crop species will aid production of safe Cd-free food. Here, we identified a single recessive gene that allowed higher Cd translocation in rice, and also determined the chromosomal location of the gene. The Cd hyperaccumulator rice variety Cho-Ko-Koku showed 3.5-fold greater Cd translocation than the no-accumulating variety Akita 63 under hydroponics. Analysis of an F2 population derived from these cultivars gave a 1:3 segregation ratio for high:low Cd translocation. This indicates that a single recessive gene controls the high Cd translocation phenotype. A QTL analysis identified a single QTL, qCdT7, located on chromosome 7. On a Cd-contaminated field, Cd accumulation in the F2 population showed continuous variation with considerable transgression. Three QTLs for Cd accumulation were identified and the peak of the most effective QTL mapped to the same region as qCdT7. Our data indicate that Cd translocation mediated by the gene on qCdT7 plays an important role in Cd accumulation on contaminated soil.


Molecular Genetics and Genomics | 1989

Construction of rice cybrid plants

Hiromori Akagi; Masahiro Sakamoto; Tomoko Negishi; Tatsuhito Fujimura

SummaryThe mitochondrial genomes of rice cells were transferred to a fertile rice variety (N8) from a cytoplasmic male sterile variety (CMS) by asymmetric protoplast fusion based on metabolic complementation. Protoplasts derived from CMS were X-irradiated (125 krad) and electrofused with protoplasts which had been treated with iodoacetamide. Metabolic complementation, presumably between nuclear and cytoplasmic compartments, enabled fused protoplasts to form colonies at high efficiency. Restriction digest analysis of mitochondrial DNA (mtDNA) indicated that hybrid cells carried mtDNA derived from both parents. Of the plants regenerated from hybrid calli, 68% carried a diploid chromosome set (2n=24) and the rest of them carried 48 chromosomes. All of them expressed the aryl acylamidase I deficient phenotype encoded by the recessive allele of the fertile N8 parent. These results indicate that the novel somatic hybrid plants regenerated were cybrids, deriving their nucleus from the iodoacetamide treated parent and their mitochondria from both parents.

Collaboration


Dive into the Hiromori Akagi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akio Watanabe

Akita Prefectural University

View shared research outputs
Top Co-Authors

Avatar

Kenji Sakurai

Akita Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroaki Shimada

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Kouichi Tezuka

Akita Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge