Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hironobu Maezaki is active.

Publication


Featured researches published by Hironobu Maezaki.


Journal of Medicinal Chemistry | 2011

Discovery of a 3-Pyridylacetic Acid Derivative (TAK-100) as a Potent, Selective and Orally Active Dipeptidyl Peptidase IV (DPP-4) Inhibitor

Yasufumi Miyamoto; Yoshihiro Banno; Tohru Yamashita; Tatsuhiko Fujimoto; Satoru Oi; Yusuke Moritoh; Tomoko Asakawa; Osamu Kataoka; Hiroaki Yashiro; Koji Takeuchi; Nobuhiro Suzuki; Koji Ikedo; Takuo Kosaka; Shigetoshi Tsubotani; Akiyoshi Tani; Masako Sasaki; Miyuki Funami; Michiko Amano; Yoshio Yamamoto; Kathleen Aertgeerts; Jason Yano; Hironobu Maezaki

Inhibition of dipeptidyl peptidase IV (DPP-4) is an exciting new approach for the treatment of diabetes. To date there has been no DPP-4 chemotype possessing a carboxy group that has progressed into clinical trials. Originating from the discovery of the structurally novel quinoline derivative 1, we designed novel pyridine derivatives containing a carboxy group. In our design, the carboxy group interacted with the targeted amino acid residues around the catalytic region and thereby increased the inhibitory activity. After further optimization, we identified a hydrate of [5-(aminomethyl)-6-(2,2-dimethylpropyl)-2-ethyl-4-(4-methylphenyl)pyridin-3-yl]acetic acid (30c) as a potent and selective DPP-4 inhibitor. The desired interactions with the critical active-site residues, such as a salt-bridge interaction with Arg125, were confirmed by X-ray cocrystal structure analysis. In addition, compound 30c showed a desired preclinical safety profile, and it was encoded as TAK-100.


Bioorganic & Medicinal Chemistry | 2011

Identification of 3-aminomethyl-1,2-dihydro-4-phenyl-1-isoquinolones: a new class of potent, selective, and orally active non-peptide dipeptidyl peptidase IV inhibitors that form a unique interaction with Lys554.

Yoshihiro Banno; Yasufumi Miyamoto; Mitsuru Sasaki; Satoru Oi; Tomoko Asakawa; Osamu Kataoka; Koji Takeuchi; Nobuhiro Suzuki; Koji Ikedo; Takuo Kosaka; Shigetoshi Tsubotani; Akiyoshi Tani; Miyuki Funami; Michiko Tawada; Yoshio Yamamoto; Kathleen Aertgeerts; Jason Yano; Hironobu Maezaki

The design, synthesis, and structure-activity relationships of a new class of potent and orally active non-peptide dipeptidyl peptidase IV (DPP-4) inhibitors, 3-aminomethyl-1,2-dihydro-4-phenyl-1-isoquinolones, are described. We hypothesized that the 4-phenyl group of the isoquinolone occupies the S1 pocket of the enzyme, the 3-aminomethyl group forms an electrostatic interaction with the S2 pocket, and the introduction of a hydrogen bond donor onto the 6- or 7-substituent provides interaction with the hydrophilic region of the enzyme. Based on this hypothesis, intensive research focused on developing new non-peptide DPP-4 inhibitors has been carried out. Among the compounds designed in this study, we identified 2-[(3-aminomethyl-2-(2-methylpropyl)-1-oxo-4-phenyl-1,2-dihydro-6-isoquinolinyl)oxy]acetamide (35a) as a potent, selective, and orally bioavailable DPP-4 inhibitor, which exhibited in vivo efficacy in diabetic model rats. Finally, X-ray crystallography of 35a in a complex with the enzyme validated our hypothesized binding mode and identified Lys554 as a new target-binding site available for DPP-4 inhibitors.


Bioorganic & Medicinal Chemistry | 2011

Design and synthesis of 3-pyridylacetamide derivatives as dipeptidyl peptidase IV (DPP-4) inhibitors targeting a bidentate interaction with Arg125

Yasufumi Miyamoto; Yoshihiro Banno; Tohru Yamashita; Tatsuhiko Fujimoto; Satoru Oi; Yusuke Moritoh; Tomoko Asakawa; Osamu Kataoka; Koji Takeuchi; Nobuhiro Suzuki; Koji Ikedo; Takuo Kosaka; Shigetoshi Tsubotani; Akiyoshi Tani; Miyuki Funami; Michiko Amano; Yoshio Yamamoto; Kathleen Aertgeerts; Jason Yano; Hironobu Maezaki

We have previously discovered nicotinic acid derivative 1 as a structurally novel dipeptidyl peptidase IV (DPP-4) inhibitor. In this study, we obtained the X-ray co-crystal structure between nicotinic acid derivative 1 and DPP-4. From these X-ray co-crystallography results, to achieve more potent inhibitory activity, we targeted Arg125 as a potential amino acid residue because it was located near the pyridine core, and some known DPP-4 inhibitors were reported to interact with this residue. We hypothesized that the guanidino group of Arg125 could interact with two hydrogen-bond acceptors in a bidentate manner. Therefore, we designed a series of 3-pyridylacetamide derivatives possessing an additional hydrogen-bond acceptor that could have the desired bidentate interaction with Arg125. We discovered the dihydrochloride of 1-{[5-(aminomethyl)-2-methyl-4-(4-methylphenyl)-6-(2-methylpropyl)pyridin-3-yl]acetyl}-l-prolinamide (13j) to be a potent and selective DPP-4 inhibitor that could interact with the guanidino group of Arg125 in a unique bidentate manner.


Bioorganic & Medicinal Chemistry | 2011

Discovery of potent, selective, and orally bioavailable quinoline-based dipeptidyl peptidase IV inhibitors targeting Lys554.

Hironobu Maezaki; Yoshihiro Banno; Yasufumi Miyamoto; Yuusuke Moritou; Tomoko Asakawa; Osamu Kataoka; Koji Takeuchi; Nobuhiro Suzuki; Koji Ikedo; Takuo Kosaka; Masako Sasaki; Shigetoshi Tsubotani; Akiyoshi Tani; Miyuki Funami; Yoshio Yamamoto; Michiko Tawada; Kathleen Aertgeerts; Jason Yano; Satoru Oi

Dipeptidyl peptidase IV (DPP-4) inhibition is a validated therapeutic option for type 2 diabetes, exhibiting multiple antidiabetic effects with little or no risk of hypoglycemia. In our studies involving non-covalent DPP-4 inhibitors, a novel series of quinoline-based inhibitors were designed based on the co-crystal structure of isoquinolone 2 in complex with DPP-4 to target the side chain of Lys554. Synthesis and evaluation of designed compounds revealed 1-[3-(aminomethyl)-4-(4-methylphenyl)-2-(2-methylpropyl)quinolin-6-yl]piperazine-2,5-dione (1) as a potent, selective, and orally active DPP-4 inhibitor (IC₅₀=1.3 nM) with long-lasting ex vivo activity in dogs and excellent antihyperglycemic effects in rats. A docking study of compound 1 revealed a hydrogen-bonding interaction with the side chain of Lys554, suggesting this residue as a potential target site useful for enhancing DPP-4 inhibition.


European Journal of Pharmacology | 2017

In vitro and in vivo antitumor activities of T-3764518, a novel and orally available small molecule stearoyl-CoA desaturase 1 inhibitor

Satoru Nishizawa; Hiroyuki Sumi; Yoshihiko Satoh; Yukiko Yamamoto; Satoshi Kitazawa; Kohei Honda; Hideo Araki; Kazuyo Kakoi; Keisuke Imamura; Masako Sasaki; Ikuo Miyahisa; Yoshinori Satomi; Ryuuichi Nishigaki; Megumi Hirayama; Kazunobu Aoyama; Hironobu Maezaki; Takahito Hara

Abstract Most cancer cells are characterized by elevated lipid biosynthesis. The rapid proliferation of cancer cells requires de novo synthesis of fatty acids. Stearoyl‐CoA desaturase‐1 (SCD1), a key enzyme for lipogenesis, is overexpressed in various types of cancer and plays an important role in cancer cell proliferation. Therefore, it has been studied as a candidate target for cancer therapy. In this study, we demonstrate the pharmacological properties of T‐3764518, a novel and orally available small molecule inhibitor of SCD1. T‐3764518 inhibited stearoyl‐CoA desaturase‐catalyzed conversion of stearoyl‐CoA to oleoyl‐CoA in colorectal cancer HCT‐116 cells and their growth. Further, it slowed tumor growth in an HCT‐116 and a mesothelioma MSTO‐211H mouse xenograft model. Comprehensive lipidomic analyses revealed that T‐3764518 increases the membrane ratio of saturated: unsaturated fatty acids in various lipid species such as phosphatidylcholines and diacylglycerols in both cultured cells and HCT‐116 xenografts. Treatment‐associated lipidomic changes were followed by activated endoplasmic reticulum (ER) stress responses such as increased immunoglobulin heavy chain‐binding protein expression in HCT‐116 cells. These T‐3764518‐induced changes led to an increase in cleaved poly (ADP‐ribose) polymerase 1 (PARP1), a marker of apoptosis. Additionally, bovine serum albumin conjugated with oleic acid, an SCD1 product, prevented cell growth inhibition and ER stress responses by T‐3764518, indicating that these outcomes were not attributable to off‐target effects. These results indicate that T‐3764518 is a promising new anticancer drug candidate.


Journal of Medicinal Chemistry | 2017

Discovery of Allosteric Inhibitors Targeting the Spliceosomal RNA Helicase Brr2

Misa Iwatani-Yoshihara; Masahiro Ito; Michael G. Klein; Takeshi Yamamoto; Kazuko Yonemori; Toshio Tanaka; Masanori Miwa; Daisuke Morishita; Satoshi Endo; Richard Tjhen; Ling Qin; Atsushi Nakanishi; Hironobu Maezaki; Tomohiro Kawamoto

Brr2 is an RNA helicase belonging to the Ski2-like subfamily and an essential component of spliceosome. Brr2 catalyzes an ATP-dependent unwinding of the U4/U6 RNA duplex, which is a critical step for spliceosomal activation. An HTS campaign using an RNA-dependent ATPase assay and initial SAR study identified two different Brr2 inhibitors, 3 and 12. Cocrystal structures revealed 3 binds to an unexpected allosteric site between the C-terminal and the N-terminal helicase cassettes, while 12 binds an RNA-binding site inside the N-terminal cassette. Selectivity profiling indicated the allosteric inhibitor 3 is more Brr2-selective than the RNA site binder 12. Chemical optimization of 3 using SBDD culminated in the discovery of the potent and selective Brr2 inhibitor 9 with helicase inhibitory activity. Our findings demonstrate an effective strategy to explore selective inhibitors for helicases, and 9 could be a promising starting point for exploring molecular probes to elucidate biological functions and the therapeutic relevance of Brr2.


Embo Molecular Medicine | 2018

Anti‐tumor efficacy of a novel CLK inhibitor via targeting RNA splicing and MYC‐dependent vulnerability

Kenichi Iwai; Masahiro Yaguchi; Kazuho Nishimura; Yukiko Yamamoto; Toshiya Tamura; Daisuke Nakata; Ryo Dairiki; Yoichi Kawakita; Ryo Mizojiri; Yoshiteru Ito; Moriteru Asano; Hironobu Maezaki; Yusuke Nakayama; Misato Kaishima; Kozo Hayashi; Mika Teratani; Shuichi Miyakawa; Misa Iwatani; Maki Miyamoto; Michael G. Klein; Wes Lane; Gyorgy Snell; Richard Tjhen; Xingyue He; Sai Pulukuri; Toshiyuki Nomura

The modulation of pre‐mRNA splicing is proposed as an attractive anti‐neoplastic strategy, especially for the cancers that exhibit aberrant pre‐mRNA splicing. Here, we discovered that T‐025 functions as an orally available and potent inhibitor of Cdc2‐like kinases (CLKs), evolutionally conserved kinases that facilitate exon recognition in the splicing machinery. Treatment with T‐025 reduced CLK‐dependent phosphorylation, resulting in the induction of skipped exons, cell death, and growth suppression in vitro and in vivo. Further, through growth inhibitory characterization, we identified high CLK2 expression or MYC amplification as a sensitive‐associated biomarker of T‐025. Mechanistically, the level of CLK2 expression correlated with the magnitude of global skipped exons in response to T‐025 treatment. MYC activation, which altered pre‐mRNA splicing without the transcriptional regulation of CLKs, rendered cancer cells vulnerable to CLK inhibitors with synergistic cell death. Finally, we demonstrated in vivo anti‐tumor efficacy of T‐025 in an allograft model of spontaneous, MYC‐driven breast cancer, at well‐tolerated dosage. Collectively, our results suggest that the novel CLK inhibitor could have therapeutic benefits, especially for MYC‐driven cancer patients.


Journal of Medicinal Chemistry | 2018

Discovery of Novel Selective Acetyl-CoA Carboxylase (ACC) 1 Inhibitors

Ryo Mizojiri; Moriteru Asano; Daisuke Tomita; Hiroshi Banno; Noriyuki Nii; Masako Sasaki; Hiroyuki Sumi; Yoshihiko Satoh; Yukiko Yamamoto; Takeo Moriya; Yoshinori Satomi; Hironobu Maezaki

We initiated our structure-activity relationship (SAR) studies for selective ACC1 inhibitors from 1a as a lead compound. SAR studies of bicyclic scaffolds revealed many potent and selective ACC1 inhibitors represented by 1f; however most of them had physicochemical issues, particularly low aqueous solubility and potent CYP inhibition. To address these two issues and improve the druglikeness of this chemical series, we converted the bicyclic scaffold into a monocyclic framework. Ultimately, this lead us to discover a novel monocyclic derivative 1q as a selective ACC1 inhibitor, which showed highly potent and selective ACC1 inhibition as well as acceptable solubility and CYP inhibition profiles. Since compound 1q displayed favorable bioavailability in mouse cassette dosing testing, we conducted in vivo PD studies of this compound. Oral administration of 1q significantly reduced the concentration of malonyl-CoA in HCT-116 xenograft tumors at doses of more than 30 mg/kg. Accordingly, our novel series of selective ACC1 inhibitors represents a set of useful orally available research tools, as well as potential therapeutic agents for cancer and fatty acid related diseases.


Bioorganic & Medicinal Chemistry | 2012

Novel 3-phenylpiperidine-4-carboxamides as highly potent and orally long-acting neurokinin-1 receptor antagonists with reduced CYP3A induction.

Junya Shirai; Hideyuki Sugiyama; Shinji Morimoto; Hironobu Maezaki; Yasuharu Yamamoto; Satoshi Okanishi; Izumi Kamo; Shiho Matsumoto; Keiko Ishigami; Nobuhiro Inatomi; Akio Imanishi; Makiko Kawamoto; Naoki Tarui; Tadatoshi Hashimoto; Yoshinori Ikeura

The synthesis and biological evaluation of a series of novel 3-phenylpiperidine-4-carboxamide derivatives are described. These compounds are generated by hybridization of the substructures from two types of tachykinin NK(1) receptor antagonists. Compound 42 showed high metabolic stability and excellent efficacy in the guinea-pig GR-73637-induced locomotive activity assay at 1 and 24h after oral administration. It also exhibited good pharmacokinetic profiles in four animal species, and a low potential in a pregnane X receptor induction assay.


Archive | 2004

Pyridine compounds as inhibitors of dipeptidyl peptidase iv

Satoru Oi; Hironobu Maezaki; Nobuhiro Suzuki

Collaboration


Dive into the Hironobu Maezaki's collaboration.

Top Co-Authors

Avatar

Satoru Oi

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akiyoshi Tani

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Koji Ikedo

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Masako Sasaki

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Shigetoshi Tsubotani

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Takuo Kosaka

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Tomoko Asakawa

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Yasufumi Miyamoto

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Yoshihiro Banno

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge