Hironobu Sanada
Fukushima Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hironobu Sanada.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Robin A. Felder; Hironobu Sanada; Jing Xu; Pei Ying Yu; Zheng Wang; Hidetsuna Watanabe; Laureano D. Asico; Wei Wang; Shaopeng Zheng; Ikuyo Yamaguchi; Scott Williams; James V. Gainer; Nancy J. Brown; Debra J. Hazen-Martin; Lee-Jun Wong; Jean E. Robillard; Robert M. Carey; Gilbert M. Eisner; Pedro A. Jose
Essential hypertension has a heritability as high as 30–50%, but its genetic cause(s) has not been determined despite intensive investigation. The renal dopaminergic system exerts a pivotal role in maintaining fluid and electrolyte balance and participates in the pathogenesis of genetic hypertension. In genetic hypertension, the ability of dopamine and D1-like agonists to increase urinary sodium excretion is impaired. A defective coupling between the D1 dopamine receptor and the G protein/effector enzyme complex in the proximal tubule of the kidney is the cause of the impaired renal dopaminergic action in genetic rodent and human essential hypertension. We now report that, in human essential hypertension, single nucleotide polymorphisms of a G protein-coupled receptor kinase, GRK4γ, increase G protein-coupled receptor kinase (GRK) activity and cause the serine phosphorylation and uncoupling of the D1 receptor from its G protein/effector enzyme complex in the renal proximal tubule and in transfected Chinese hamster ovary cells. Moreover, expressing GRK4γA142V but not the wild-type gene in transgenic mice produces hypertension and impairs the diuretic and natriuretic but not the hypotensive effects of D1-like agonist stimulation. These findings provide a mechanism for the D1 receptor coupling defect in the kidney and may explain the inability of the kidney to properly excrete sodium in genetic hypertension.
Hypertension | 1999
Hironobu Sanada; Pedro A. Jose; Debra J. Hazen-Martin; Peiying Yu; Jing Xu; David E. Bruns; John Phipps; Robert M. Carey; Robin A. Felder
The ability of the dopamine-1 (D1)-like receptor to stimulate adenylyl cyclase (AC) and phospholipase C (PLC), inhibit sodium transport in the renal proximal tubule (RPT), and produce natriuresis is attenuated in several rat models of hypertension. Since the inhibitory effect of D1-like receptors on RPT sodium transport is also reduced in some patients with essential hypertension, we measured D1-like receptor coupling to AC and PLC in cultures of human RPT cells from normotensive (NT) and hypertensive (HT) subjects. Basal cAMP concentrations were the same in NT (n=6) and HT (n=4). However, the D1-like receptor agonist fenoldopam increased cAMP production to a greater extent in NT (maximum response=67+/-1%) than in HT (maximum response=17+/-5%), with a potency ratio of 105. Dopamine also increased cAMP production to a greater extent in NT (32+/-3%) than in HT (14+/-3%). The fenoldopam-mediated increase in cAMP production was blocked by SCH23390 (a D1-like receptor antagonist) and by antisense D1 oligonucleotides in both HT and NT, indicating action at the D1 receptor. The stimulatory effects of forskolin and parathyroid hormone-related protein of cAMP accumulation were not statistically different in NT and HT, indicating receptor specificity and an intact G-protein/AC pathway. The fenoldopam-stimulated PLC activity was not impaired in HT, and the primary sequence and expression of the D1 receptor were the same in NT and HT. However, D1 receptor serine phosphorylation in the basal state was greater in HT than in NT and was not responsive to fenoldopam stimulation in HT. These studies demonstrate the expression of D1 receptors in human RPT cells in culture. The uncoupling of the D1 receptor in both rats (previously described) and humans (described here) suggests that this mechanism may be involved in the pathogenesis of hypertension; the uncoupling may be due to ligand-independent phosphorylation of the D1 receptor in hypertension.
Clinical Endocrinology | 2001
Sanae Midorikawa; Hironobu Sanada; Shigeatsu Hashimoto; Takayuki Suzuki; Tsuyoshi Watanabe
OBJECTIVE Several recent studies have indicated that patients with adrenal incidentaloma often have disturbed glucose tolerance or/and hypertension. It is unclear whether these metabolic conditions could be caused by adrenal incidentaloma. We investigated the prevalence of disturbed glucose tolerance, hypertension and insulin resistance in the patients with non‐functioning adrenal incidentaloma and evaluated the changes of the parameters such as glucose tolerance, blood pressure and insulin sensitivity after adrenalectomy.
Current Hypertension Reports | 2011
Hironobu Sanada; John E. Jones; Pedro A. Jose
The assessment of salt sensitivity of blood pressure is difficult because of the lack of universal consensus on definition. Regardless of the variability in the definition of salt sensitivity, increased salt intake, independent of the actual level of blood pressure, is also a risk factor for cardiovascular morbidity and mortality and kidney disease. A modest reduction in salt intake results in an immediate decrease in blood pressure, with long-term beneficial consequences. However, some have suggested that dietary sodium restriction may not be beneficial to everyone. Thus, there is a need to distinguish salt-sensitive from salt-resistant individuals, but it has been difficult to do so with phenotypic studies. Therefore, there is a need to determine the genes that are involved in salt sensitivity. This review focuses on genes associated with salt sensitivity, with emphasis on the variants associated with salt sensitivity in humans that are not due to monogenic causes. Special emphasis is given to gene variants associated with salt sensitivity whose protein products interfere with cell function and increase blood pressure in transgenic mice.
The American Journal of Clinical Nutrition | 2010
Midori Yatabe; Junichi Yatabe; Minoru Yoneda; Tsuyoshi Watanabe; Makoto Otsuki; Robin A. Felder; Pedro A. Jose; Hironobu Sanada
BACKGROUND The mechanisms by which a derangement of glucose metabolism causes high blood pressure are not fully understood. OBJECTIVES This study aimed to clarify the relation between salt sensitivity of blood pressure and insulin resistance, which are important subcharacteristics of hypertension and impaired glucose metabolism, respectively. Effects on the renin-angiotensin and sympathetic nervous systems were also studied. DESIGN The state of glucose metabolism was assessed by a hyperinsulinemic euglycemic glucose clamp technique and a 75-g oral-glucose-tolerance test in 24 essential hypertensive patients who were lean and without diabetes or chronic kidney disease. The subjects were classified as salt-sensitive or salt-resistant on the basis of the difference (Delta mean blood pressure > or =5%) between 24-h ambulatory blood pressure monitoring results on the seventh day of low-salt (34 mmol/d) and high-salt (252 mmol/d) diets. Urine and blood samples were collected for analyses. RESULTS There was a robust inverse relation between the glucose infusion rate (GIR) and the salt sensitivity index. The GIR correlated directly with the change in urinary sodium excretion and was inversely related to the change in hematocrit when the salt diet was changed from low to high, which is indicative of salt and fluid retention in salt-sensitive subjects. The GIR also showed an inverse correlation compared with the changes in urinary norepinephrine excretion, plasma renin activity, and plasma aldosterone concentration. CONCLUSIONS Salt sensitivity of blood pressure is strongly associated with insulin resistance in lean, essential hypertensive patients. Hyperinsulinemia, sympathetic overactivation, and reduced suppression of the renin-angiotensin system may play a role in this relation.
Hypertension | 1997
Ryoji Ozono; O'Connell Dp; Zhi-Qin Wang; Allan F. Moore; Hironobu Sanada; Robin A. Felder; Robert M. Carey
The dopamine D1 receptor has recently been identified in the rat heart and kidney. In the present study, using Western blot analysis and light microscopic immunohistochemistry, we examined D1 receptor protein expression in the human kidney and heart. Antipeptide polyclonal rabbit antiserum was raised against the third extracellular domain of the native receptor and affinity-purified using a protein-A column. Selectivity of the antiserum was validated by recognition of the D1 receptor expressed in stably transfected LTK- cells and Sf-9 cells. The immunohistochemical staining for D1 receptor protein was distributed throughout the atrium and ventricular myocardium and in the coronary vessels. In the kidney, positive immunoreactive signal was detected in the proximal and distal tubules, the collecting ducts, and the large intrarenal vasculature, whereas staining was absent in the juxtaglomerular (JG) cells and the glomeruli. D1 receptor antiserum preadsorbed against the immunizing peptide did not produce significant staining. In Western blot analysis, a single 55-kD band was detected for the D1 receptor in membranes from the D1 receptor transfected Sf-9 cells but not in nontransfected cells. In the heart and kidney, we detected a 55-kD band as well as an additional 40-kD band, which may reflect partial degradation of the receptor protein. These results provide the first evidence for the localization of the dopamine D1 receptor protein in the human heart and kidney. The similar distribution of this subtype receptor in the human heart and kidney to that in the rat supports the possible (patho)physiological significance of the peripheral dopamine system in humans.
Life Sciences | 1992
Kenji Mizuno; Shigeatsu Hashimoto; Susumu Niimura; Hironobu Sanada; Hidetsuna Watanabe; Makoto Ohtsuki; Soitsu Fukuchi
Losartan, a recently developed nonpeptide angiotensin II (Ang II) receptor antagonist, was administered orally to 10-week-old spontaneously hypertensive rats (SHR) for 2 weeks. Cardiac weight and tissue Ang II, as well as plasma renin activity (PRA) and Ang II, were determined. Treatment with Losartan (10 mg/kg per day) lowered blood pressure markedly. Losartan reduced significantly the left ventricular weight by 11% compared with control rats. The left ventricular Ang II content was lowered by Losartan (18.6 +/- 0.9 pg/tissue; 21.9 +/- 0.9 pg/tissue, control, p less than 0.05), whereas PRA and plasma Ang II concentration were increased by the treatment. With the control and Losartan-treated animals, there was a significant positive correlation between the left ventricular weight and the tissue Ang II content (r = 0.563, p less than 0.05). These results provide evidence that cardiac tissue Ang II, rather than circulating Ang II, plays an important role in the pathophysiology of left ventricular hypertrophy of this animal model of human hypertension.
Hypertension | 1997
Ikuyo Yamaguchi; Lynne Yao; Hironobu Sanada; Ryoji Ozono; M. Maral Mouradian; Pedro A. Jose; Robert M. Carey; Robin A. Felder
Two dopamine D1-like receptors have been cloned from mammals, the D1 and D5 receptors, also known as D1A and D1B receptors, respectively, in rodents. Although D1-like receptors are known to stimulate renin release, the receptor subtype mediating this action has not been determined. We investigated D1 receptor subtype expression in rat juxtaglomerular cells obtained after enzymatic dispersion of kidney cortex and differential centrifugation. Juxtaglomerular cells in primary culture were immunocytochemically 85% to 95% renin positive. These cells expressed the D1A but not the D1B receptor (mRNA and protein). D1-like receptor function was demonstrated by a concentration-dependent stimulation of cAMP production by dopamine (n = 5-9 per group). Fenoldopam, a D1-like receptor agonist, also caused a concentration-dependent increase in cAMP production and renin secretion that was blocked by the selective D1-like receptor antagonist SCH23390 (n = 4-13 per group). Although the D1 ligands do not distinguish between the cloned D1-like receptors, the actions of fenoldopam were due to occupancy of the D1A receptor: (1) the D1B receptor, the only other mammalian D1-like receptor, is not expressed in juxtaglomerular cells; (2) antisense but not sense D1A oligonucleotides completely blocked the stimulatory effect of fenoldopam on cAMP production and renin secretion. We conclude that there is selective dopamine receptor gene expression in juxtaglomerular cells; the dopamine receptor subtype linked to the stimulation of cAMP and renin secretion in juxtaglomerular cells is the D1A subtype.
Clinical and Experimental Hypertension | 1997
Hironobu Sanada; Lynne Yao; Pedro A. Jose; Robert M. Carey; Robin A. Felder
D2-like receptors in the kidney have been suggested to be important in the regulation of renin release but the D2-like subtype(s) expressed in juxtaglomerular (JG) cells is not known. Therefore, we determined which of the D2-like family of dopamine receptors is located in primary cultures of rat juxtaglomerular (JG) cells. Reverse transcriptase-polymerase chain reaction (RT-PCR) identified D3 and D4 but not D2Long mRNA in JG cells (n = 3). D3 receptor function was demonstrated by a concentration-dependent inhibition of forskolin-stimulated cAMP production by LY-171555 (a non-selective D2-like receptor agonist) and PD-128593 (a partially selective D3 agonist) (n = 3-7/group). The stimulatory action of LY-171555 and PD-128593 we blocked by the non-selective D2-like antagonist YM-09151. We conclude that D3 and D4 dopamine receptor subtypes are expressed in JG cells; the receptor subtype linked to the inhibition of cAMP in JG cells remains to be established.
Endocrinology | 2011
Junichi Yatabe; Minoru Yoneda; Midori Yatabe; Tsuyoshi Watanabe; Robin A. Felder; Pedro A. Jose; Hironobu Sanada
Angiotensin II (Ang II) and Ang III stimulate aldosterone secretion by adrenal glomerulosa, but the angiotensin receptor subtypes involved and the effects of Ang IV and Ang (1-7) are not clear. In vitro, different angiotensins were added to rat adrenal glomerulosa, and aldosterone concentration in the medium was measured. Ang II-induced aldosterone release was blocked (30.3 ± 7.1%) by an Ang II type 2 receptor (AT2R) antagonist, PD123319. Candesartan, an Ang II type 1 receptor (AT1R) antagonist, also blocked Ang II-induced aldosterone release (42.9 ± 4.8%). Coadministration of candesartan and PD123319 almost abolished the Ang II-induced aldosterone release. A selective AT2R agonist, CGP42112, was used to confirm the effects of AT2R. CGP42112 increased aldosterone secretion, which was almost completely inhibited by PD123319. In addition to Ang II, Ang III also induced aldosterone release, which was not blocked by candesartan. However, PD123319 blocked 22.4 ± 10.5% of the Ang III-induced aldosterone secretion. Ang IV and Ang (1-7) did not induce adrenal aldosterone secretion. In vivo, both Ang II and Ang III infusion increased plasma aldosterone concentration, but only Ang II elevated blood pressure. Ang IV and Ang (1-7) infusion did not affect blood pressure or aldosterone concentration. In conclusion, this report showed for the first time that AT2R partially mediates Ang III-induced aldosterone release, but not AT1R. Also, over 60% of Ang III-induced aldosterone release may be independent of both AT1R and AT2R. Ang III and AT2R signaling may have a role in the pathophysiology of aldosterone breakthrough.