Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hironobu Yanagie is active.

Publication


Featured researches published by Hironobu Yanagie.


Pharmaceutical Research | 2001

Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo

Osamu Ishida; Kazuo Maruyama; Hiroyuki Tanahashi; Motoharu Iwatsuru; Katsunori Sasaki; Masazumi Eriguchi; Hironobu Yanagie

AbstractPurpose. The purpose of this study was to determine the usefulness of transferrin (TF)-pendant-type polyethyleneglycol (PEG)-liposomes (TF-PEG-liposomes), in which TF was covalently linked to the distal terminal of PEG chains on the external surface of PEG-liposomes as a carrier for in vivo cytoplasmic targeting to tumor cells. Methods. Small unilamellar TF-PEG-liposomes (100-140 nm in diameter) were prepared from DSPC, CH, DSPE-PEG, and DSPE-PEG-COOH (2:1:0.11:0.021, molar ratio), and were conjugated to TF via the carboxyl residue of DSPE-PEG-COOH. The intracellular targeting ability of TF-PEG-liposomes to tumor cells was examined in vitro and in Colon 26 tumor-bearing mice. Results. TF-PEG-liposomes, bearing approximately 25 TF molecules per liposome, readily bound to mouse Colon 26 cells in vitro and were internalized by receptor-mediated endocytosis. TF-PEG-liposomes showed a prolonged residence time in the circulation and low RES uptake in Colon 26 tumor-bearing mice, resulting in enhanced extravasation of the liposomes into the solid tumor tissue. Electron microscopic studies in Colon 26 tumor-bearing mice revealed that the extravasated TF-PEG-liposomes were internalized into tumor cells by receptor-mediated endocytosis. Conclusion. TF-PEG-liposomes had the capabilities of specific receptor binding and receptor-mediated endocytosis to target cells after extravasation into solid tumors in vivo. Such liposomes should be useful for in vivo cytoplasmic targeting of chemotherapeutic agents or plasmid DNAs to target cells.


British Journal of Cancer | 1991

APPLICATION OF BORONATED ANTI-CEA IMMUNOLIPOSOME TO TUMOUR CELL GROWTH INHIBITION IN IN VITRO BORON NEUTRON CAPTURE THERAPY MODEL

Hironobu Yanagie; Taisuke Tomita; H. Kobayashi; Y. Fujii; Takahashi T; K. Hasumi; Nariuchi H; Sekiguchi M

An immunoliposome containing a 10B-compound has been examined as a selective drug delivery system in boron neutron-capture therapy. Liposomes, conjugated with monoclonal antibodies specific for carcinoembryonic antigen (CEA) were shown to bind selectively to cells bearing CEA on their surface. The immunoliposomes attached to tumour cells suppressed growth in vitro upon thermal neutron irradiation and suppression was dependent upon the concentration of the 10B-compound in the liposomes and on the density of antibody conjugated to the liposomes. The results suggest that immunoliposomes containing the 10B-compound could act as a selective and efficient carrier of 10B atoms to target tumour cells in boron neutron-capture therapy.


British Journal of Cancer | 2008

Antitumour effect of polyoxomolybdates : induction of apoptotic cell death and autophagy in in vitro and in vivo models

Aya Ogata; Hironobu Yanagie; E Ishikawa; Y Morishita; S. Mitsui; Atsushi Yamashita; K Hasumi; Shinichi Takamoto; Toshihiro Yamase; Masazumi Eriguchi

Polyoxomolybdates (PMs) as discrete molybdenum-oxide cluster anions have been investigated in the course of study of their medical applications. Here, we show the significant antitumour potency of the polyoxomolybdate [Me3NH]6[H2MoV12O28(OH)12(MoVIO3)4]·2H2O (PM-17), which is a photo-reduced compound of [NH3Pri]6[Mo7O24]·3H2O. The effect of PM-17 on the growth of cancer cell lines and xenografts was assessed by a cell viability test and analysis of tumour expansion rate. Morphological analysis was carried out by Hoechst staining, flow-cytometric analysis of Annexin V staining, terminal deoxynucleotidyl transferase-mediated ‘nick-end’ labelling staining, and electron-microscopic analysis. Activation of autophagy was detected by western blotting and fluorescence-microscopic analysis of the localisation of GFP-LC3 in transfected tumour cells. PM-17 inhibited the growth of human pancreatic cancer (AsPC-1) xenografts in a nude mice model, and induced morphological alterations in tumour cells. Correspondingly, PM-17 repressed the proliferation of AsPC-1 cells and human gastric cancer cells (MKN45) depending on the dose in vitro. We observed apoptotic patterns as the formation of apoptotic small bodies and translocation of phosphatidylserine by Hoechst staining and flow-cytometric analysis following Annexin V staining, and in parallel, autophagic conformation by the formulation of autophagosomes and localisation of GFP-LC3 by electron- and fluorescence-microscopic analysis.


Biotechnology Letters | 2006

Gene transfer by DNA/mannosylated chitosan complexes into mouse peritoneal macrophages.

Mayu Hashimoto; Minoru Morimoto; Hiroyuki Saimoto; Yoshihiro Shigemasa; Hironobu Yanagie; Masazumi Eriguchi; Toshinori Sato

Chitosan is a biodegradable and biocompatible polymer and is useful as a non-viral vector for gene delivery. In order to deliver pDNA/chitosan complex into macrophages expressing a mannose receptor, mannose-modified chitosan (man-chitosan) was employed. The cellular uptake of pDNA/man-chitosan complexes through mannose recognition was then observed. The pDNA/man-chitosan complexes showed no significant cytotoxicity in mouse peritoneal macrophages, while pDNA/man-PEI complexes showed strong cytotoxicity. The pDNA/man-chitosan complexes showed much higher transfection efficiency than pDNA/chitosan complexes in mouse peritoneal macrophages. Observation with a confocal laser microscope suggested differences in the cellular uptake mechanism between pDNA/chitosan complexes and pDNA/man-chitosan complexes. Mannose receptor-mediated gene transfer thus enhances the transfection efficiency of pDNA/chitosan complexes.


British Journal of Cancer | 1997

Inhibition of human pancreatic cancer growth in nude mice by boron neutron capture therapy.

Hironobu Yanagie; Taisuke Tomita; H. Kobayashi; Y. Fujii; Y. Nonaka; Y. Saegusa; K. Hasumi; M. Eriguchi; T. Kobayashi; K. Ono

Immunoliposomes were prepared by conjugating anti-carcinoembryonic antigen (CEA) monoclonal antibody with liposomes containing [10B]compound. These immunoliposomes were shown to bind selectively to human pancreatic carcinoma cells (AsPC-1) bearing CEA on their surface. The cytotoxic effects of locally injected [10B]compound, multilamellar liposomes containing [10B]compound or [10B]immunoliposomes (anti-CEA) on human pancreatic carcinoma xenografts in nude mice were evaluated with thermal neutron irradiation. After thermal neutron irradiation of mice injected with [10B]solution, 10B-containing liposomes or [10B]immunoliposomes, AsPC-1 tumour growth was suppressed relative to controls. Injection of [10B]immunoliposomes caused the greatest tumour suppression with thermal neutron irradiation in vivo. Histopathologically, hyalinization and necrosis were found in 10B-treated tumours, while tumour tissue injected with saline or saline-containing immunoliposomes showed neither destruction nor necrosis. These results suggest that intratumoral injection of boronated immunoliposomes can increase the retention of 10B atoms by tumour cells, causing tumour growth suppression in vivo upon thermal neutron irradiation. Boron neutron capture therapy (BNCT) with intratumoral injection of immunoliposomes is able to destroy malignant cells in the marginal portion between normal tissues and cancer tissues from the side of 4He generation.


Biomedicine & Pharmacotherapy | 2008

Highly efficient in vivo gene transfection by plasmid/PEI complexes coated by anionic PEG derivatives bearing carboxyl groups and RGD peptide

Mitsuko Sakae; Tomoko Ito; Chieko Yoshihara; Naoko Iida-Tanaka; Hironobu Yanagie; Masazumi Eriguchi; Yoshiyuki Koyama

A new class of an anionic poly (ethylene glycol) derivative, PEG-Suc, bearing 17.7 pairs of carboxylic acid-side chains was synthesized. PEG-Suc deposited onto the DNA/polyethyleneimine complexes without destroying them even at high dose ratio. Coating of the DNA complexes by PEG-Suc recharged their surface to negative, and effectively protected them from the albumin-induced aggregation. Paired carboxyl groups in the side chains showed higher proton sponge effect. Negatively charged surface would diminish the electrostatic binding of the complexes to the cells, and the transfection efficiency on the cultured cells was not high. RGD peptide side chain as a ligand to malignant cell surfaces was then introduced to compensate the reduced electrical adhesion. RGD-PEG-Suc-coated plasmid/PEI complex brought about more than 3 times higher reporter protein activity on the cultured B16 cells. Those bio-compatible DNA complexes with ligand attained very high gene expression in tumor, lung, and liver after injection into mouse tail vein.


Biomedicine & Pharmacotherapy | 2003

A molecular biological study of anti-tumor mechanisms of an anti-cancer agent Oxaliplatin against established human gastric cancer cell lines

Masazumi Eriguchi; Yasumasa Nonaka; Hironobu Yanagie; Iwao Yoshizaki; Yasutaka Takeda; M. Sekiguchi

We report that preoperative administration of Oxaliplatin, a new anti-cancer platinum agent, is an effective treatment for gastric cancer. The purpose of this in vitro study is to determine whether Oxaliplatin induces apoptosis in established human gastric cancer cell lines. Five established gastric cancer cell lines are used: MNK45, KATO-III, OKAJIMA, MNK28 and MNK74. Chemosensitivity to l-OHP is studied using a growth inhibition test. Induction of apoptosis in gastric cancer cells is analyzed by assessing DNA ladder formation, DNA fragmentation and actin cleavage. While all five gastric cancer cell lines are sensitive to Oxaliplatin, the poorly differentiated lines are the most sensitive. DNA ladder formation and/or DNA fragmentation are detected in all gastric cancer cell lines. However, actin cleavage is not detected in any of the cell lines. Oxaliplatin has an anti-cancer effect on human gastric cancer cell lines, particularly cell lines of poorly differentiated adenocarcinoma, indicating that Oxaliplatin would be an effective treatment for poorly differentiated gastric cancer. Oxaliplatin induces apoptosis in gastric cancer cell lines, but actin cleavage is not detected in cancer cells. This finding suggests that (1) the apoptotic caspase pathway leads mainly to DNA condensation and fragmentation, and (2) caspase-independent apoptotic pathways may be activated when gastric cancer cells are treated with Oxaliplatin.


Japanese Journal of Cancer Research | 2000

Targeting Chemotherapy to Solid Tumors with Long-circulating Thermosensitive Liposomes and Local Hyperthermia

Osamu Ishida; Kazuo Maruyama; Hironobu Yanagie; Masazumi Eriguchi; Motoharu Iwatsuru

The effectiveness of the combination of long‐circulating, thermosensitive liposomes and hyperthermia is described. Small‐sized, thermosensitive liposomes that encapsulate doxorubicin (DXR‐PEGTSL (SUV)) have a prolonged circulation time and are extravasated to targeted solid tumors in vivo, where they preferentially release the agent in an anatomical site subjected to local hyperthermia. Liposomes were prepared by the incorporation of amphipathic polyethyleneglycol (PEG) to prolong their circulation time. DXR‐PEG‐TSL (SUV) was retained longest and was accumulated most efficiently in solid tumors in Balb/c mice. The combination of DXR‐PEG‐TSL (SUV) and hyperthermia at the tumor sites 3 h after injection, gave high concentrations of doxorubicin in tumor tissue and resulted in more effective tumor retardation and increased survival time. A large amount of DXR‐PEG‐TSL (SUV) was extravasated into the tumors during circulation for 3 h after injection, suggesting that the encapsulated drug was released into the interstitial spaces of the lesions by local hyperthermia. This system is expected to be clinically valuable for the delivery of a wide range of chemotherapeutic agents in the treatment of solid tumors.


ACS Nano | 2015

Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy

Peng Mi; Novriana Dewi; Hironobu Yanagie; Daisuke Kokuryo; Minoru Suzuki; Yoshinori Sakurai; Yanmin Li; Ichio Aoki; Koji Ono; Hiroyuki Takahashi; Horacio Cabral; Nobuhiro Nishiyama; Kazunori Kataoka

Gadolinium (Gd) chelates-loaded nanocarriers have high potential for achieving magnetic resonance imaging (MRI)-guided Gd neutron capture therapy (GdNCT) of tumors. Herein, we developed calcium phosphate micelles hybridized with PEG-polyanion block copolymers, and incorporated with the clinical MRI contrast agent Gd-diethylenetriaminepentaacetic acid (Gd-DTPA/CaP). The Gd-DTPA/CaP were nontoxic to cancer cells at the concentration of 100 μM based on Gd-DTPA, while over 50% of the cancer cells were killed by thermal neutron irradiation at this concentration. Moreover, the Gd-DTPA/CaP showed a dramatically increased accumulation of Gd-DTPA in tumors, leading to the selective contrast enhancement of tumor tissues for precise tumor location by MRI. The enhanced tumor-to-blood distribution ratio of Gd-DTPA/CaP resulted in the effective suppression of tumor growth without loss of body weight, indicating the potential of Gd-DTPA/CaP for safe cancer treatment.


Expert Opinion on Drug Delivery | 2008

Application of drug delivery system to boron neutron capture therapy for cancer

Hironobu Yanagie; Aya Ogata; Hirotaka Sugiyama; Masazumi Eriguchi; Shinichi Takamoto; Hiroyuki Takahashi

Background: Tumor cell destruction in boron neutron capture therapy (BNCT) is due to the nuclear reaction between 10B and thermal neutrons (10B + 1n → 7Li + 4He (α) + 2.31 MeV (93.7 %)/2.79 MeV (6.3 %)). The resulting lithium ions and αparticles are high linear energy transfer (LET) particles which give a high biological effect. Their short range in tissue (5 – 9 μm) restricts radiation damage to those cells in which boron atoms are located at the time of neutron irradiation. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer and hepatoma. Sodium mercaptoundecahydro-dodecaborate (Na210B12H11SH: BSH) and borono-phenylalanine (10BPA) are currently being used in clinical treatments. These low molecule compounds are easily cleared from cancer cells and blood, so high accumulation and selective delivery of boron compounds into tumor tissues and cancer cells are most important to achieve effective BNCT and to avoid damage to adjacent healthy cells. Objective: In order to achieve the selective delivery of boron atoms to cancer cells, a drug delivery system (DDS) is an attractive intelligent technology for targeting and controlled release of drugs. Methods: We performed literature searches related to boron delivery systems in vitro and in vivo Results: We describe several DDS technologies for boron delivery to cancer tissues and cancer cells from the past to current status. We are convinced that it will be possible to use liposomes, monoclonal antibodies and WOW emulsions as boron delivery systems for BNCT clinically in accordance with the preparation of good commercial product (GCP) grade materials.

Collaboration


Dive into the Hironobu Yanagie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Ogura

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge