Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hironori Fujita is active.

Publication


Featured researches published by Hironori Fujita.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A Lotus basic leucine zipper protein with a RING-finger motif negatively regulates the developmental program of nodulation

Rieko Nishimura; Masayuki Ohmori; Hironori Fujita; Masayoshi Kawaguchi

The developmental program of nodulation is regulated systemically in leguminous host species. A mutant astray (Ljsym77) in Lotus japonicus has lost some sort of its ability to regulate this symtem, and shows enhanced and early nodulation. In the absence of rhizobia, this mutant exhibits characteristics associated with defects in light and gravity responses. These nonsymbiotic phenotypes of astray are very similar to those observed in photomorphogenic Arabidopsis mutant hy5. Based on this evidence, we predicted that astray might contain a mutation in the HY5 homologue of L. japonicus. The homologue, named LjBzf, encodes a basic leucine zipper protein in the C-terminal half that shows the highest level of identity with HY5 of all Arabidopsis proteins. It also encodes legume-characteristic combination of motifs, including a RING-finger motif and an acidic region in the N-terminal half. The astray phenotypes were cosegregated with LjBzf, and the failure to splice the intron was detected. Nonsymbiotic and symbiotic phenotypes of astray were complemented by introduction of CaMV35S:LjBzf. It is noteworthy that although Arabidopsis hy5 showed an enhancement of lateral root initiation, Lotus astray showed an enhancement of nodule initiation but not of lateral root initiation. Legume-characteristic combination of motifs of ASTRAY may play specific roles in the regulation of nodule development.


PLOS Genetics | 2015

Molecular Framework of a Regulatory Circuit Initiating Two-Dimensional Spatial Patterning of Stomatal Lineage

Robin J. Horst; Hironori Fujita; Jin Suk Lee; Amanda L. Rychel; Jacqueline M. Garrick; Masayoshi Kawaguchi; Kylee M. Peterson; Keiko U. Torii

Stomata, valves on the plant epidermis, are critical for plant growth and survival, and the presence of stomata impacts the global water and carbon cycle. Although transcription factors and cell-cell signaling components regulating stomatal development have been identified, it remains unclear as to how their regulatory interactions are translated into two-dimensional patterns of stomatal initial cells. Using molecular genetics, imaging, and mathematical simulation, we report a regulatory circuit that initiates the stomatal cell-lineage. The circuit includes a positive feedback loop constituting self-activation of SCREAMs that requires SPEECHLESS. This transcription factor module directly binds to the promoters and activates a secreted signal, EPIDERMAL PATTERNING FACTOR2, and the receptor modifier TOO MANY MOUTHS, while the receptor ERECTA lies outside of this module. This in turn inhibits SPCH, and hence SCRMs, thus constituting a negative feedback loop. Our mathematical model accurately predicts all known stomatal phenotypes with the inclusion of two additional components to the circuit: an EPF2-independent negative-feedback loop and a signal that lies outside of the SPCH•SCRM module. Our work reveals the intricate molecular framework governing self-organizing two-dimensional patterning in the plant epidermis.


PLOS ONE | 2011

Reaction-diffusion pattern in shoot apical meristem of plants.

Hironori Fujita; Koichi Toyokura; Kiyotaka Okada; Masayoshi Kawaguchi

A fundamental question in developmental biology is how spatial patterns are self-organized from homogeneous structures. In 1952, Turing proposed the reaction-diffusion model in order to explain this issue. Experimental evidence of reaction-diffusion patterns in living organisms was first provided by the pigmentation pattern on the skin of fishes in 1995. However, whether or not this mechanism plays an essential role in developmental events of living organisms remains elusive. Here we show that a reaction-diffusion model can successfully explain the shoot apical meristem (SAM) development of plants. SAM of plants resides in the top of each shoot and consists of a central zone (CZ) and a surrounding peripheral zone (PZ). SAM contains stem cells and continuously produces new organs throughout the lifespan. Molecular genetic studies using Arabidopsis thaliana revealed that the formation and maintenance of the SAM are essentially regulated by the feedback interaction between WUSHCEL (WUS) and CLAVATA (CLV). We developed a mathematical model of the SAM based on a reaction-diffusion dynamics of the WUS-CLV interaction, incorporating cell division and the spatial restriction of the dynamics. Our model explains the various SAM patterns observed in plants, for example, homeostatic control of SAM size in the wild type, enlarged or fasciated SAM in clv mutants, and initiation of ectopic secondary meristems from an initial flattened SAM in wus mutant. In addition, the model is supported by comparing its prediction with the expression pattern of WUS in the wus mutant. Furthermore, the model can account for many experimental results including reorganization processes caused by the CZ ablation and by incision through the meristem center. We thus conclude that the reaction-diffusion dynamics is probably indispensable for the SAM development of plants.


Developmental Dynamics | 2006

The origin of the diversity of leaf venation pattern

Hironori Fujita; Atsushi Mochizuki

The leaf venation pattern of plants shows remarkable diversity and species‐specificity. However, the mechanism underlying the pattern formation and pattern diversity remains unclear. We developed a mathematical model that is based on the positive feedback regulation between plant hormone auxin and its efflux carrier. This system can generate auxin flow pathways by self‐organization from an almost homogeneous state. This result explains a well‐known experimental phenomenon referred as to “polar auxin transport.” The model can produce diverse leaf venation patterns with spatial regularity under similar conditions to those of leaf development, that is, in the presence of leaf expansion and auxin sink. Final venation patterns are strikingly affected by leaf shape and leaf expansion. These results indicate that the positive feedback regulation between auxin and its efflux carrier is a central dynamic in leaf venation pattern formation. The diversity of leaf venation patterns in plant species is probably due to the differences of leaf shape and leaf expansion pattern. Developmental Dynamics 235:2710–2721, 2006.


PLOS Genetics | 2013

Pattern dynamics in adaxial-abaxial specific gene expression are modulated by a plastid retrograde signal during Arabidopsis thaliana leaf development.

Toshiaki Tameshige; Hironori Fujita; Keiro Watanabe; Koichi Toyokura; Maki Kondo; Kiyoshi Tatematsu; Noritaka Matsumoto; Ryuji Tsugeki; Masayoshi Kawaguchi; Mikio Nishimura; Kiyotaka Okada

The maintenance and reformation of gene expression domains are the basis for the morphogenic processes of multicellular systems. In a leaf primordium of Arabidopsis thaliana, the expression of FILAMENTOUS FLOWER (FIL) and the activity of the microRNA miR165/166 are specific to the abaxial side. This miR165/166 activity restricts the target gene expression to the adaxial side. The adaxial and abaxial specific gene expressions are crucial for the wide expansion of leaf lamina. The FIL-expression and the miR165/166-free domains are almost mutually exclusive, and they have been considered to be maintained during leaf development. However, we found here that the position of the boundary between the two domains gradually shifts from the adaxial side to the abaxial side. The cell lineage analysis revealed that this boundary shifting was associated with a sequential gene expression switch from the FIL-expressing (miR165/166 active) to the miR165/166-free (non-FIL-expressing) states. Our genetic analyses using the enlarged fil expression domain2 (enf2) mutant and chemical treatment experiments revealed that impairment in the plastid (chloroplast) gene expression machinery retards this boundary shifting and inhibits the lamina expansion. Furthermore, these developmental effects caused by the abnormal plastids were not observed in the genomes uncoupled1 (gun1) mutant background. This study characterizes the dynamic nature of the adaxial-abaxial specification process in leaf primordia and reveals that the dynamic process is affected by the GUN1-dependent retrograde signal in response to the failure of plastid gene expression. These findings advance our understanding on the molecular mechanism linking the plastid function to the leaf morphogenic processes.


Nature Communications | 2015

Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea

Kenji Fukushima; Hironori Fujita; Takahiro Yamaguchi; Masayoshi Kawaguchi; Hirokazu Tsukaya; Mitsuyasu Hasebe

Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf.


PLOS ONE | 2014

Evolutionary Dynamics of Nitrogen Fixation in the Legume–Rhizobia Symbiosis

Hironori Fujita; Seishiro Aoki; Masayoshi Kawaguchi

The stabilization of host–symbiont mutualism against the emergence of parasitic individuals is pivotal to the evolution of cooperation. One of the most famous symbioses occurs between legumes and their colonizing rhizobia, in which rhizobia extract nutrients (or benefits) from legume plants while supplying them with nitrogen resources produced by nitrogen fixation (or costs). Natural environments, however, are widely populated by ineffective rhizobia that extract benefits without paying costs and thus proliferate more efficiently than nitrogen-fixing cooperators. How and why this mutualism becomes stabilized and evolutionarily persists has been extensively discussed. To better understand the evolutionary dynamics of this symbiosis system, we construct a simple model based on the continuous snowdrift game with multiple interacting players. We investigate the model using adaptive dynamics and numerical simulations. We find that symbiotic evolution depends on the cost–benefit balance, and that cheaters widely emerge when the cost and benefit are similar in strength. In this scenario, the persistence of the symbiotic system is compatible with the presence of cheaters. This result suggests that the symbiotic relationship is robust to the emergence of cheaters, and may explain the prevalence of cheating rhizobia in nature. In addition, various stabilizing mechanisms, such as partner fidelity feedback, partner choice, and host sanction, can reinforce the symbiotic relationship by affecting the fitness of symbionts in various ways. This result suggests that the symbiotic relationship is cooperatively stabilized by various mechanisms. In addition, mixed nodule populations are thought to encourage cheater emergence, but our model predicts that, in certain situations, cheaters can disappear from such populations. These findings provide a theoretical basis of the evolutionary dynamics of legume–rhizobia symbioses, which is extendable to other single-host, multiple-colonizer systems.


Journal of Theoretical Biology | 2013

Pattern formation by two-layer Turing system with complementarysynthesis

Hironori Fujita; Masayoshi Kawaguchi

Many multicellular organisms have a layered structure. The interaction between these layers plays an essential role in many developmental processes, and key molecules involved in these processes are often expressed in a layer-specific manner. On the other hand, pattern formation of organisms has been frequently discussed in connection with the Turing system. However, the Turing system has so far been studied mainly in single-layered space. In this paper, we thus investigate a two-layer Turing system with complementary synthesis, in which two interacting molecules are exclusively synthesized in different layers. From a linear stability analysis, we determine the Turing condition of the complementary system, and show that this condition requires stronger regulatory interactions of the molecules than that of the system with usual ubiquitous synthesis. We then confirm that this complementary system affects pattern types in fixed and expanding two-dimensional spaces in a similar way to the system with ubiquitous synthesis. In addition, the two-layer system includes two types of diffusion, lateral and transversal, and these have distinct effects on pattern formation with lateral diffusion mainly determining the periodicity of patterns generated and transversal diffusion affecting pattern type. These results suggest that the transversal diffusion functions as a time delay in the two-layer system. Finally, we apply this complementary system to explain pattern formation of the shoot apical meristem of plants. These findings provide an understanding of pattern formation caused by the interaction between cell layers in multicellular organisms.


Plant Signaling & Behavior | 2011

Strategy for shoot meristem proliferation in plants

Hironori Fujita; Masayoshi Kawaguchi

Shoot apical meristem (SAM) of plants harbors stem cells capable of generating the aerial tissues including reproductive organs. Therefore, it is very important for plants to control SAM proliferation and its density as a survival strategy. The SAM is regulated by the dynamics of a specific gene network, such as the WUS-CLV interaction of A. thaliana. By using a mathematical model, we previously proposed six possible SAM patterns in terms of the manner and frequency of stem cell proliferation. Two of these SAM patterns are predicted to generate either dichotomous or axillary shoot branch. Dichotomous shoot branches caused by this mechanism are characteristic of the earliest vascular plants, such as Cooksonia and Rhynia, but are observed in only a small minority of plant species of the present day. On the other hand, axillary branches are observed in the majority of plant species and are induced by a different dynamics of the feedback regulation between auxin and the asymmetric distribution of PIN auxin efflux carriers. During evolution, some plants may have adopted this auxin-PIN system to more strictly control SAM proliferation.


PLOS Computational Biology | 2018

Spatial regularity control of phyllotaxis pattern generated by the mutual interaction between auxin and PIN1

Hironori Fujita; Masayoshi Kawaguchi

Phyllotaxis, the arrangement of leaves on a plant stem, is well known because of its beautiful geometric configuration, which is derived from the constant spacing between leaf primordia. This phyllotaxis is established by mutual interaction between a diffusible plant hormone auxin and its efflux carrier PIN1, which cooperatively generate a regular pattern of auxin maxima, small regions with high auxin concentrations, leading to leaf primordia. However, the molecular mechanism of the regular pattern of auxin maxima is still largely unknown. To better understand how the phyllotaxis pattern is controlled, we investigated mathematical models based on the auxin–PIN1 interaction through linear stability analysis and numerical simulations, focusing on the spatial regularity control of auxin maxima. As in previous reports, we first confirmed that this spatial regularity can be reproduced by a highly simplified and abstract model. However, this model lacks the extracellular region and is not appropriate for considering the molecular mechanism. Thus, we investigated how auxin maxima patterns are affected under more realistic conditions. We found that the spatial regularity is eliminated by introducing the extracellular region, even in the presence of direct diffusion between cells or between extracellular spaces, and this strongly suggests the existence of an unknown molecular mechanism. To unravel this mechanism, we assumed a diffusible molecule to verify various feedback interactions with auxin–PIN1 dynamics. We revealed that regular patterns can be restored by a diffusible molecule that mediates the signaling from auxin to PIN1 polarization. Furthermore, as in the one-dimensional case, similar results are observed in the two-dimensional space. These results provide a great insight into the theoretical and molecular basis for understanding the phyllotaxis pattern. Our theoretical analysis strongly predicts a diffusible molecule that is pivotal for the phyllotaxis pattern but is yet to be determined experimentally.

Collaboration


Dive into the Hironori Fujita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge