Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hironori Fujiwara is active.

Publication


Featured researches published by Hironori Fujiwara.


Journal of Ethnopharmacology | 2014

Antidepressant-like effect of Butea superba in mice exposed to chronic mild stress and its possible mechanism of action.

Daishu Mizuki; Kinzo Matsumoto; Ken Tanaka; Xoan Thi Le; Hironori Fujiwara; Tsutomu Ishikawa; Yoshihiro Higuchi

ETHNOPHARMACOLOGICAL RELEVANCE Butea superba (BS) is a Thai medicinal plant that has been used as a folk medicine to improve physical and mental conditions and to prevent impaired sexual performance in middle-aged or elderly males. We have previously reported that this plant extract could improve cognitive deficits and depression-like behavior in olfactory bulbectomized mice, an animal model of dementia and depression. AIM OF THE STUDY In this study we examined the effect of BS on depression-like behavior in mice subjected to unpredictable chronic mild stress (UCMS) to clarify the antidepressant-like activity of BS and the molecular mechanism underlying this effect. MATERIALS AND METHODS UCMS mice were administered BS daily (300 mg of dried herb weight/kg, p.o.) or a reference drug, imipramine (IMP, 10 mg/kg, i.p.), 1 week after starting the UCMS procedure. We employed the sucrose preference test and the tail suspension test to analyze anhedonia and depression-like behavior of mice, respectively. Serum and brain tissues of mice were used for neurochemical and immunohistochemical studies. The UCMS procedure induced anhedonia and depression-like behavior, and BS treatment, as well as IMP treatment, attenuated these symptoms. UCMS caused an elevation of serum corticosterone level, an index of hyper-activation of the hypothalamic-pituitary-adrenal (HPA) axis, in a manner attenuated by BS and IMP treatment. BS treatment also attenuated UCMS-induced decrease in the expression levels of brain-derived neurotrophic factor (BDNF) mRNA, cyclic AMP-responsive element binding protein (CREB) and a phosphorylated form of N-methyl-d-aspartate receptor subunit NR1, synaptic plasticity-related signaling proteins. Moreover, the UCMS procedure reduced doublecortin-positive cells in the dentate gyrus region of the hippocampus. BS administration reversed these UCMS-induced neurochemical and histological abnormalities. CONCLUSION These results suggest that BS can ameliorate chronic stress-induced depression-like symptoms and that the effects of BS are mediated by restoring dysfunctions of the HPA axis and synaptic plasticity-related signaling systems and neurogenesis in the hippocampus.


Journal of Ethnopharmacology | 2015

Protective effects of Bacopa monnieri on ischemia-induced cognitive deficits in mice: the possible contribution of bacopaside I and underlying mechanism.

Xoan Thi Le; Hang Thi Nguyet Pham; Tai Van Nguyen; Khoi Minh Nguyen; Ken Tanaka; Hironori Fujiwara; Kinzo Matsumoto

ETHNOPHARMACOLOGICAL RELEVANCE Bacopa monnieri (L.) Wettst. (BM) is a medicinal plant which has been not only used as a traditional medicine to improve intelligence and memory but also taken as vegetables in Vietnam for a long time. We previously demonstrated that Bacopa monnieri (BM) alcohol extract attenuated olfactory bulbectomy-induced cognitive deficits and the deterioration of septo-hippocampal cholinergic neurons, suggesting the beneficial effects of BM for dementia patients. AIM OF STUDY The present study was conducted to further clarify the anti-dementia effects of BM, using transient 2 vessels occlusion (T2VO)-induced cognitive deficits in mice, an animal model of vascular dementia, and also to investigate the constituent(s) contributing to the actions of BM, using oxygen- and glucose-deprivation (OGD)-induced hippocampal cell damage as an in vitro model of ischemia. MATERIALS AND METHODS In the in vivo experiments, T2VO mice were treated daily with a standardized BM extract (50mg/kg, p.o.) 1 week before and continuously 3 days after surgery. In the in vitro experiments, organotypic hippocampal slice cultures (OHSCs) were incubated with triterpenoid saponins from BM (bacosides) or MK-801 1h before and during a 45-min period of OGD. Neuronal cell damage in OHSCs was analyzed by measurement of propidium iodide uptake 24h after OGD. RESULTS The BM treatment significantly ameliorated T2VO-induced impairments in non-spatial short term memory performance in the object recognition test. Among the bacosides tested in the in vitro experiments using OHSCs, bacopaside I (25 μM) exhibited potent neuroprotective effects against OGD-induced neuronal cell damage. Double staining with TUNEL and PI revealed that OGD caused necrosis and apoptosis and that bacopaside I attenuated the effects of OGD. The neuroprotective effects of bacopaside I were blocked by the PKC inhibitor Ro-31-8220 and PI3K inhibitor LY294002, but not by the ERK inhibitor U0126. OGD reduced the level of phospho-Akt (p-Akt), an anti-apoptotic factor, in OHSCs. This decrease was reversed by bacopaside I. Moreover, the treatment with bacopaside I itself was able to elevate the level of p-Akt in OHSCs. CONCLUSION These results suggest that BM was beneficial for the prevention of cognitive deficits related to cerebral ischemia and also that bacopaside I, via PKC and PI3K/Akt mechanisms, played a role in the neuroprotective effects of BM observed in the mouse model.


Neuroscience | 2015

Involvement of dopaminergic and cholinergic systems in social isolation-induced deficits in social affiliation and conditional fear memory in mice

Ryo Okada; Hironori Fujiwara; D. Mizuki; Ryota Araki; Kinzo Matsumoto

Post-weaning social isolation rearing (SI) in rodents elicits various behavioral abnormalities including attention deficit hyperactivity disorder-like behaviors. In order to obtain a better understanding of SI-induced behavioral abnormalities, we herein investigated the effects of SI on social affiliation and conditioned fear memory as well as the neuronal mechanism(s) underlying these effects. Four-week-old male mice were group-housed (GH) or socially isolated for 2-4 weeks before the experiments. The social affiliation test and fear memory conditioning were conducted at the age of 6 and 7 weeks, respectively. SI mice were systemically administered saline or test drugs 30 min before the social affiliation test and fear memory conditioning. Contextual and auditory fear memories were elucidated 1 and 4 days after fear conditioning. Social affiliation and contextual and auditory fear memories were weaker in SI mice than in GH mice. Methylphenidate (MPH), an inhibitor for dopamine transporters, ameliorated the SI-induced social affiliation deficit and the effect was attenuated by SCH23390, a D1 receptor antagonist, but not by sulpiride, a D2 receptor antagonist. On the other hand, tacrine, an acetylcholinesterase inhibitor, had no effect on this deficit. In contrast, tacrine improved SI-induced deficits in fear memories in a manner that was reversed by the muscarinic receptor antagonist scopolamine, while MPH had no effect on memory deficits. Neurochemical studies revealed that SI down-regulated the expression levels of the phosphorylated forms of neuro-signaling proteins, calmodulin-dependent kinase II (p-CaMKII), and cyclic AMP-responsive element binding protein (p-CREB), as well as early growth response protein-1 (Egr-1) in the hippocampus. The administration of MPH or tacrine before fear conditioning had no effect on the levels of the phosphorylated forms of the neuro-signaling proteins elucidated following completion of the auditory fear memory test; however, when analyzed 30 min after the administration of the test drugs, tacrine significantly attenuated the SI-induced decrease in p-CaMKII, p-CREB, and Egr-1 in a manner reversible by scopolamine. Our results suggest that SI-induced deficits in social affiliation and conditioned fear memory were mediated by functional alterations to central dopaminergic and cholinergic systems, respectively.


Journal of Pharmaceutical and Biomedical Analysis | 2015

Chemical profiling with HPLC-FTMS of exogenous and endogenous chemicals susceptible to the administration of chotosan in an animal model of type 2 diabetes-induced dementia

Yimin Niu; Feng Li; Chikako Inada; Ken Tanaka; Shiro Watanabe; Hironori Fujiwara; Sachie Sasaki-Hamada; Jun-Ichiro Oka; Kinzo Matsumoto

In our previous study, the daily administration of chotosan (CTS), a Kampo formula consisting of Uncaria and other 10 different crude drugs, ameliorated cognitive deficits in several animal models of dementia including type 2 diabetic db/db mice in a similar manner to tacrine, an acetylcholinesterase inhibitor. The present study investigated the metabonomics of CTS in db/db mice, a type 2 diabetes model, and m/m mice, a non-diabetes control strain, to identify the exogenous and endogenous chemicals susceptible to the administration of CTS using high performance liquid chromatography equipped with an orbitrap hybrid Fourier transform mass spectrometer. The results obtained revealed that the systemic administration of CTS for 20 days led to the distribution of Uncalia plant-derived alkaloids such as rhynchophylline, hirsuteine, and corynoxeine in the plasma and brains of db/db and m/m mice and induced alterations in four major metabolic pathways; i.e., (1) purine, (2) tryptophan, (3) cysteine and methionine, (4) glycerophospholipids in db/db mice. Moreover, glycerophosphocholine (GPC) levels in the plasma and brain were significantly higher in CTS-treated db/db mice than in vehicle-treated control animals. The results of the in vitro experiment using organotypic hippocampal slice cultures demonstrated that GPC (10-30 μM), as well as tacrine, protected hippocampal cells from N-methyl-d-aspartate-induced excitotoxicity in a manner that was reversible with the muscarinic receptor antagonist scopolamine, whereas GPC had no effect on the activity of acetylcholinesterase in vitro. Our results demonstrated that some CTS constituents with neuropharmacological activity were distributed in the plasma and brain tissue following the systemic administration of CTS and may subsequently have affected some metabolic pathways including glycerophospholipid metabolism and cognitive function in db/db mice. Moreover, the present metabonomic analysis suggested that GPC is a putative endogenous chemical that may be involved in the tacrine-like actions of CTS in the present diabetic animal model.


European Journal of Pharmacology | 2013

Endogenous acetylcholine rescues NMDA-induced long-lasting hippocampal cell damage via stimulation of muscarinic M1 receptors: Elucidation using organic hippocampal slice cultures

Chikako Inada; Xoan Thi Le; Koichi Tsuneyama; Hironori Fujiwara; Takeshi Miyata; Kinzo Matsumoto

This study aimed to investigate a recuing role of cholinergic systems in the excitotoxicity-induced hippocampal cell damage. Organotypic hippocampal slice cultures (OHSCs) were prepared from 7-day-old mice and exposed to N-methyl-d-aspartate (NMDA) for 24h. After washing out the NMDA, OHSCs were incubated in medium containing test drugs for 0-6 days. Hippocampal cell damage was evaluated by propidium iodide staining, immunofluorescence, and Western blotting. NMDA (1-10 μM) dose-dependently damaged hippocampal cells. The toxic effect of 3 μM NMDA was also observed at 3-6 days, even after washing out NMDA, and was blocked by MK-801 from day 3 to day 6. Post-treatments with tacrine, donepezil, and galantamine reduced the NMDA-induced long-lasting hippocampal cell damage. The effect of tacrine was induced in a manner dependent on the incubation period after NMDA treatment and was confirmed by Nissl staining and immunostaining with NeuN, a marker of mature neurons. The effect of tacrine was attenuated by scopolamine and a muscarinic M(1) receptor antagonist, pirenzepine, but not by a muscarinic M(3) receptor antagonist, darifenacin, or a nicotinic receptor antagonist, mecamylamine. The protein kinase C inhibitor Ro-31-8220 abolished the effect of tacrine. The pretreatment with 3 μM NMDA had no effect on the expression level of presynaptic cholinergic markers, choline acetyltransferase and vesicular acetylcholine transporter, in OHSCs. These results suggest that a low concentration of NMDA causes long-lasting hippocampal cell damage and that endogenous acetylcholine plays, via muscarinic M(1) receptor, a rescuing role in the excitotoxicity-induced long-lasting hippocampal cell damage.


Neurochemistry International | 2014

Possible involvement of VEGF signaling system in rescuing effect of endogenous acetylcholine on NMDA-induced long-lasting hippocampal cell damage in organotypic hippocampal slice cultures

Chikako Inada; Yimin Niu; Kinzo Matsumoto; Xoan Thi Le; Hironori Fujiwara

In our previous study, elevation of endogenous acetylcholine (ACh) by tacrine (THA) rescued NMDA-induced long-lasting hippocampal cell damage via muscarinic M1 receptors. However, the detailed molecular mechanism underlying the effect of ACh is unclear. This study investigated possible involvement of the VEGF signaling system in the rescuing effect of ACh on N-methyl-d-aspartate (NMDA)-induced long-lasting hippocampal cell damage using organotypic hippocampal slice cultures (OHSCs). As previously reported, NMDA pretreatment caused long-lasting hippocampal cell damage in OHSCs in a manner reversible by treatment with THA. The protein kinase C (PKC) inhibitor Ro31-8220, but not the extracellular signal-regulated kinase (ERK) inhibitor U0126, dose-dependently and almost completely abolished the effect of THA. The rescuing effect of THA was also partially but significantly blocked by Ki8751, a selective inhibitor of type 2 vascular endothelial growth factor (VEGF) receptor (VEGFR-2) tyrosine kinase. NMDA pretreatment elevated the expression level of HIF1α, whereas it decreased the expression of VEGF-A. Moreover, NMDA pretreatment reduced the level of phosphorylated VEGFR-2 without apparently affecting the level of VEGFR-2 or β-actin. These NMDA pretreatment-induced changes were significantly attenuated by THA treatment. Immunohistochemical analysis conducted 6days after NMDA pretreatment revealed that VEGF-A and VEGFR-2 were mainly expressed on astrocytes and neurons, respectively, in OHSCs. In OHSCs pretreated with NMDA, THA treatment induced a morphological and activation-related change in astrocytes expressing VEGF-A. The present results demonstrate that endogenous acetylcholine plays a rescuing role towards excitotoxicity-induced long-lasting hippocampal cell damage in part via paracrine VEGF signaling between astrocytes and hippocampal neurons or autocrine VEGF signaling in hippocampal neurons in OHSCs.


Journal of Traditional and Complementary Medicine | 2018

Sansoninto, a traditional herbal medicine, ameliorates behavioral abnormalities and down-regulation of early growth response-1 expression in mice exposed to social isolation stress

Hironori Fujiwara; Ryohei Tsushima; Ryo Okada; Suresh Awale; Ryota Araki; Kinzo Matsumoto

Social isolation (SI) mice exhibit behavioral abnormalities such as impairments of sociability- and attention-like behaviors, offering an animal model of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD). This study aimed to identify the effects of Sansoninto (SST; 酸棗仁湯 suān zǎo rén tāng) on the psychiatric symptoms related to ADHD using SI mice. Four-week-old mice were socially isolated during the experimental period, and SST administration (800 or 2400 mg/kg, p.o.) was started at 2 weeks after starting SI. SST ameliorated SI-induced impairments of sociability- and attention-like behaviors in a dose-dependent manner, and tended to ameliorate contextual- and auditory-dependent fear memory deficit. Moreover, the expression level of Egr-1 was down-regulated by SI stress, and was restored by a high dose of SST. These findings suggest that SST is useful for improvement of psychiatric disorders such as ADHD.


Behavioural Brain Research | 2017

Decrease in endogenous brain allopregnanolone induces autism spectrum disorder (ASD)-like behavior in mice: A novel animal model of ASD

Ken Ebihara; Hironori Fujiwara; Suresh Awale; Dya Fita Dibwe; Ryota Araki; Kinzo Matsumoto

&NA; Autism spectrum disorder (ASD) is a neurodevelopmental disorder with core symptoms of social impairments and restrictive repetitive behaviors. Recent evidence has implicated a dysfunction in the GABAergic system in the pathophysiology of ASD. We investigated the role of endogenous allopregnanolone (ALLO), a neurosteroidal positive allosteric modulator of GABAA receptors, in the regulation of ASD‐like behavior in male mice using SKF105111 (SKF), an inhibitor of type I and type II 5&agr;‐reductase, a rate‐limiting enzyme of ALLO biosynthesis. SKF impaired sociability‐related performance, as analyzed by three different tests; i.e., the 3‐chamber test and social interaction in the open field and resident‐intruder tests, without affecting olfactory function elucidated by the buried food test. SKF also induced repetitive grooming behavior without affecting anxiety‐like behavior. SKF had no effect on short‐term spatial working memory or long‐term fear memory, but enhanced latent learning ability in male mice. SKF‐induced ASD‐like behavior in male mice was abolished by the systemic administration of ALLO (1 mg/kg, i.p.) and methylphenidate (MPH: 2.5 mg/kg, i.p.), a dopamine transporter inhibitor. The effects of SKF on brain ALLO contents in male mice were reversed by ALLO, but not MPH. On the other hand, SKF failed to induce ASD‐like behavior or a decline in brain ALLO contents in female mice. These results suggest that ALLO regulates episodes of ASD‐like behavior by positively modulating the function of GABAA receptors linked to the dopaminergic system. Moreover, a sex‐dependently induced decrease in brain ALLO contents may provide an animal model to study the main features of ASD.


Traditional & Kampo Medicine | 2018

Polygalae radix extract ameliorates behavioral and neuromorphological abnormalities in chronic corticosterone-treated mice: Polygalae radix in a corticosterone model

Ryota Araki; Hironori Fujiwara; Kinzo Matsumoto; Kazufumi Toume

Polygalae radix is a traditional herbal medicine used for treatment of anxiety or amnesia in several East Asian cultures. In this study, the mechanisms underlying the effects of Polygalae radix extract (PRE) on brain dysfunction such as depressive symptoms and cognitive impairment were investigated.


Neurochemistry International | 2018

Endogenous acetylcholine regulates neuronal and astrocytic vascular endothelial growth factor expression levels via different acetylcholine receptor mechanisms

Kyoko Kimura; Kinzo Matsumoto; Hironori Ohtake; Jun-Ichiro Oka; Hironori Fujiwara

ABSTRACT Vascular endothelial growth factor (VEGF), a signaling molecule involved in angiogenesis, plays an important role in neuroprotection and neurogenesis. In the present study, we aimed to elucidate the mechanisms underlying endogenous acetylcholine (ACh)‐induced VEGF expression in neurons and astrocytes, and identify the neuronal cells contributing to its expression in the medial septal area, a nuclear origin of cholinergic neurons mainly projecting to the hippocampus. The mRNA expression and secretion of VEGF were measured by RT‐PCR and ELISA using mouse primary cultured cortical neurons and astrocytes. VEGF expression in the medial septal area was assessed by RT‐PCR and immunostaining using mice treated with tacrine [9‐amino‐1,2,3,4‐tetrahydro‐acridine HCl (THA); 2.5 mg/kg, i.p.] once daily for 7 days. The THA treatment increased VEGF mRNA expression in neurons in a manner that was reversed by mecamylamine, a nicotinic ACh receptor (AChR) antagonist, whereas in mouse primary cultured astrocytes, carbachol, but not THA dose‐dependently increased VEGF mRNA expression and secretion in a manner that was inhibited by scopolamine, a muscarinic AChR inhibitor. In in vivo studies, the administration of THA significantly increased the expression of VEGF in medial septal cholinergic neurons and the effects of THA were significantly blocked by mecamylamine. THA also significantly increased the expression levels of a phosphorylated form of VEGF receptor 2 (p‐VEGFR2), an activated form of VEGFR2. The present results suggest that endogenous ACh plays an up‐regulatory role for VEGF expression in neurons and astrocytes via different mechanisms. Moreover, endogenous ACh‐induced increases in VEGF levels appear to activate VEGFR2 on medial septal cholinergic neurons via an autocrine mechanism. HighlightsEndogenous ACh enhances VEGF expression in both neurons and astrocytes.VEGF expression is regulated by different pathway between both cells.THA elevates VEGF expression especially in medial septal cholinergic neurons.THA increases the expression of activated form of VEGFR2 via an autocrine mechanism.

Collaboration


Dive into the Hironori Fujiwara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun-Ichiro Oka

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge