Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroshi Asanuma is active.

Publication


Featured researches published by Hiroshi Asanuma.


Nature Medicine | 2002

Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: Metalloproteinase inhibitors as a new therapy

Masanori Asakura; Masafumi Kitakaze; Seiji Takashima; Yulin Liao; Fuminobu Ishikura; Tsuyoshi Yoshinaka; Hiroshi Ohmoto; Koichi Node; Kohichiro Yoshino; Hiroshi Ishiguro; Hiroshi Asanuma; Shoji Sanada; Yasushi Matsumura; Hiroshi Takeda; Shintaro Beppu; Michihiko Tada; Masatsugu Hori; Shigeki Higashiyama

G-protein–coupled receptor (GPCR) agonists are well-known inducers of cardiac hypertrophy. We found that the shedding of heparin-binding epidermal growth factor (HB-EGF) resulting from metalloproteinase activation and subsequent transactivation of the epidermal growth factor receptor occurred when cardiomyocytes were stimulated by GPCR agonists, leading to cardiac hypertrophy. A new inhibitor of HB-EGF shedding, KB-R7785, blocked this signaling. We cloned a disintegrin and metalloprotease 12 (ADAM12) as a specific enzyme to shed HB-EGF in the heart and found that dominant-negative expression of ADAM12 abrogated this signaling. KB-R7785 bound directly to ADAM12, suggesting that inhibition of ADAM12 blocked the shedding of HB-EGF. In mice with cardiac hypertrophy, KB-R7785 inhibited the shedding of HB-EGF and attenuated hypertrophic changes. These data suggest that shedding of HB-EGF by ADAM12 plays an important role in cardiac hypertrophy, and that inhibition of HB-EGF shedding could be a potent therapeutic strategy for cardiac hypertrophy.


Circulation Research | 2003

Activation of Adenosine A1 Receptor Attenuates Cardiac Hypertrophy and Prevents Heart Failure in Murine Left Ventricular Pressure-Overload Model

Yulin Liao; Seiji Takashima; Yoshihiro Asano; Masanori Asakura; Akiko Ogai; Yasunori Shintani; Tetsuo Minamino; Hiroshi Asanuma; Shoji Sanada; Jiyoong Kim; Hisakazu Ogita; Hitonobu Tomoike; Masatsugu Hori; Masafumi Kitakaze

Abstract— Sympathomimetic stimulation, angiotensin II, or endothelin-1 is considered to be an essential stimulus mediating ventricular hypertrophy. Adenosine is known to protect the heart from excessive catecholamine exposure, reduce production of endothelin-1, and attenuate the activation of the renin-angiotensin system. These findings suggest that adenosine may also attenuate myocardial hypertrophy. To verify this hypothesis, we examined whether activation of adenosine receptors can attenuate cardiac hypertrophy and reduce the risk of heart failure. Our in vitro study of neonatal rat cardiomyocytes showed that 2-chloroadenosine (CADO), a stable adenosine analogue, inhibits protein synthesis of cardiomyocytes induced by phenylephrine, endothelin-1, angiotensin II, or isoproterenol, which were mimicked by the stimulation of adenosine A1 receptors. For our in vivo study, cardiac hypertrophy was induced by transverse aortic constriction (TAC) in C57BL/6 male mice. Four weeks after TAC, both heart to body weight ratio (6.80±0.18 versus 8.34±0.33 mg/g, P <0.0001) as well as lung to body weight ratio (6.23±0.27 versus 10.03±0.85 mg/g, P <0.0001) became significantly lower in CADO-treated mice than in the TAC group. Left ventricular fractional shortening and left ventricular dP/dtmax were improved significantly by CADO treatment. Similar results were obtained using the selective adenosine A1 agonist N6-cyclopentyladenosine (CPA). A nonselective adenosine antagonist, 8-(p-sulfophenyl)-theophylline, and a selective adenosine A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine, eliminated the antihypertrophic effect of CADO and CPA, respectively. The plasma norepinephrine level was decreased and myocardial expression of regulator of G protein signaling 4 was upregulated in CADO-treated mice. These results indicate that the stimulation of adenosine receptors attenuates both the cardiac hypertrophy and myocardial dysfunction via adenosine A1 receptor–mediated mechanisms.


Cardiovascular Drugs and Therapy | 2005

Erythropoietin Just Before Reperfusion Reduces Both Lethal Arrhythmias and Infarct Size via the Phosphatidylinositol-3 Kinase-Dependent Pathway in Canine Hearts

Akio Hirata; Tetsuo Minamino; Hiroshi Asanuma; Shoji Sanada; Masashi Fujita; Osamu Tsukamoto; Masakatsu Wakeno; Masafumi Myoishi; Ken-ichiro Okada; Hidekazu Koyama; Kazuo Komamura; Seiji Takashima; Yoshiro Shinozaki; Hidezo Mori; Hitonobu Tomoike; Masatsugu Hori; Masafumi Kitakaze

Although recent studies suggest that erythropoietin (EPO) may reduce multiple features of the myocardial ischemia/reperfusion injury, the cellular mechanisms and the clinical implications of EPO-induced cardioprotection are still unclear. Thus, in this study, we clarified dose-dependent effects of EPO administered just before reperfusion on infarct size and the incidence of ventricular fibrillation and evaluated the involvement of the phosphatidylinositol-3 (PI3) kinase in the in vivo canine model. The canine left anterior descending coronary artery was occluded for 90 min followed by 6 h of reperfusion. A single intravenous administration of EPO just before reperfusion significantly reduced infarct size (high dose (1,000 IU/kg): 7.7 ± 1.6%, low dose (100 IU/kg): 22.1 ± 2.4%, control: 40.0 ± 3.6%) in a dose-dependent manner. Furthermore, the high, but not low, dose of EPO administered as a single injection significantly reduced the incidence of ventricular fibrillation during reperfusion (high dose: 0%, low dose: 40.0%, control: 50.0%). An intracoronary administration of a PI3 kinase inhibitor, wortmannin, blunted the infarct size-limiting and anti-arrhythmic effects of EPO. Low and high doses of EPO equally induced Akt phosphorylation and decreased the equivalent number of TUNEL-positive cells in the ischemic myocardium of dogs. These effects of EPO were abolished by the treatment with wortmannin. In conclusion, EPO administered just before reperfusion reduced infarct size and the incidence of ventricular fibrillation via the PI3 kinase-dependent pathway in canine hearts. EPO administration can be a realistic strategy for the treatment of acute myocardial infarction.


Journal of Clinical Investigation | 1998

Endogenous adenosine inhibits P-selectin-dependent formation of coronary thromboemboli during hypoperfusion in dogs.

Tetsuo Minamino; Masafumi Kitakaze; Hiroshi Asanuma; Y Tomiyama; Masamichi Shiraga; Hideyuki Sato; Yasunori Ueda; Hiroharu Funaya; Tsunehiko Kuzuya; Yuji Matsuzawa; Masatsugu Hori

The activation of platelets and the formation of neutrophil- platelet conjugates may lead to the development of thromboemboli. We studied whether blockade of adenosine receptors during coronary hypoperfusion may cause thromboemboli via P-selectin-dependent mechanisms in 30 open-chest dogs. When coronary blood flow was reduced to 20% of the control, it was stable at low levels with increases in adenosine levels. When 8-p-sulfophenyltheophylline, an adenosine receptor antagonist, was infused during coronary hypoperfusion, coronary blood flow decreased gradually and approached almost zero 20 min after its administration. Histological examination revealed thromboemboli in the small coronary vessels. During hypoperfusion in the presence of 8-p-sulfophenyltheophylline, the mAb against P-selectin attenuated both the reduction in coronary blood flow and the formation of thromboemboli, and improved contractile and metabolic dysfunction of the myocardium. Flow cytometric analysis indicated that the expression of P-selectin on platelet and neutrophil-platelet adhesion were increased during coronary hypoperfusion, and that both were further augmented by 8-p-sulfophenyltheophylline. Immunohistochemical examination showed no staining of P-selectin in the ischemic myocardium. Adenosine inhibited the thrombin-induced expression of P-selectin on platelet and neutrophil- platelet adhesion via adenosine A2 receptors. Adenosine appears to inhibit the formation of thromboemboli during coronary hypoperfusion by suppressing the expression of P-selectin on platelets and neutrophil-platelet adhesion.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1997

Plasma Levels of Nitrite/Nitrate and Platelet cGMP Levels Are Decreased in Patients With Atrial Fibrillation

Tetsuo Minamino; Masafumi Kitakaze; Hiroshi Sato; Hiroshi Asanuma; Hiroharu Funaya; Yukihiro Koretsune; Masatsugu Hori

Patients with atrial fibrillation have been reported to exhibit abnormal hemostasis. Since nitric oxide (NO) exerts antithrombotic effects and attenuates platelet function, we evaluated two indicators of plasma NO levels, the plasma levels of nitrite and nitrate (NOx), and the levels of cGMP in platelets. We also examined whether indicators of plasma NO levels were associated with abnormalities in parameters related to platelet function, blood coagulation, and fibrinolysis. We evaluated 45 patients with chronic sustained atrial fibrillation (33 men and 12 women, age range 63 +/- 2 years) compared with 45 sex- and age- (+/- 2 years) matched nonhospitalized subjects with sinus rhythm. There were no significant differences between the two groups in the incidence of risk factors for stroke except for ischemic heart disease or in echocardiographic parameters. Plasma levels of NOx measured using the Greiss reagent (mean [interquartile range]: 15.6 [9.5 to 25.7] versus 24.1 [14.2 to 40.8] mumol/L, n = 45) and the platelet cGMP levels (0.33 [0.16 to 0.67] versus 0.63 [0.31 to 1.29] pmol/10(9) platelets, n = 9) were significantly (P < .05) lower in the patients with atrial fibrillation than in the control subjects. Plasma levels of D-dimer, beta-thromboglobulin, and fibrinogen were significantly (P < .05) higher in the patients with atrial fibrillation. The two groups did not differ as to the plasma levels of tissue plasminogen activator or plasminogen activator inhibitor-1. Our findings suggest that a decrease in plasma NO levels may account for the hemostatic abnormalities observed in patients with atrial fibrillation.


Circulation | 2006

Long-Term Stimulation of Adenosine A2b Receptors Begun After Myocardial Infarction Prevents Cardiac Remodeling in Rats

Masakatsu Wakeno; Tetsuo Minamino; Osamu Seguchi; Hidetoshi Okazaki; Osamu Tsukamoto; Ken-ichiro Okada; Akio Hirata; Masashi Fujita; Hiroshi Asanuma; Jiyoong Kim; Kazuo Komamura; Seiji Takashima; Naoki Mochizuki; Masafumi Kitakaze

Background— Adenosine inhibits proliferation of cardiac fibroblasts and hypertrophy of cardiomyocytes, both of which may play crucial roles in cardiac remodeling. In the present study, we investigated whether chronic stimulation of adenosine receptors begun after myocardial infarction (MI) prevents cardiac remodeling. Methods and Results— MI was produced in Wistar rats by permanent ligation of the left anterior descending coronary artery. One week after the onset of MI, animals were randomized into 8 groups: vehicle, dipyridamole (DIP; the adenosine uptake inhibitor, 50 mg/kg), 2-chroloadenosine (CADO; the stable analogue of adenosine, 2 mg/kg), and CADO in the presence of the nonselective adenosine receptor antagonist 8-sulfophenyltheophylline (8-SPT) or the selective antagonist for adenosine A1, A2a, A2b, or A3 receptor. Three weeks after treatment, hemodynamic and echocardiographic parameters in the DIP and CADO groups were significantly improved compared with the vehicle group. These hemodynamic and echocardiographic improvements were blunted by either 8-SPT or the selective adenosine A2b antagonist MRS1754 but not by the selective antagonists for other subtypes of adenosine receptors. The collagen volume fraction was smaller, and gene expression of the molecules associated with cardiac remodeling such as matrix metalloproteinase in noninfarcted areas was reduced in the DIP and CADO groups compared with the vehicle group, both of which were attenuated by either 8-SPT or MRS1754. Conclusions— Long-term stimulation of adenosine A2b receptors begun after MI attenuates cardiac fibrosis in the noninfarcted myocardium and improves cardiac function. Drugs that stimulate adenosine A2b receptors or increase adenosine levels are new candidates for preventing cardiac remodeling after MI.


Journal of the American College of Cardiology | 1999

A Ca channel blocker, benidipine, increases coronary blood flow and attenuates the severity of myocardial ischemia via no-dependent mechanisms in dogs

Masafumi Kitakaze; Koichi Node; Tetsuo Minamino; Hiroshi Asanuma; Tsunehiko Kuzuya; Masatsugu Hori

OBJECTIVES This study was undertaken to examine whether a dihydropyridine Ca channel blocker, benidipine, increases cardiac NO levels, and thus coronary blood flow (CBF) in ischemic hearts. BACKGROUND Benidipine protects endothelial cells against ischemia and reperfusion injury in hearts. METHODS AND RESULTS In open chest dogs, coronary perfusion pressure (CPP) of the left anterior descending coronary artery was reduced so that CBF decreased to one-third of the control CBF, and thereafter CPP was maintained constant (103+/-8 to 42+/-1 mmHg). Both fractional shortening (FS: 6.1+/-1.0%) and lactate extraction ratio (LER: -41+/-4%) decreased. Ten minutes after the onset of an intracoronary infusion of benidipine (100 ng/kg/min), CBF increased from 32+/-1 to 48+/-4 ml/100g/ min during 20 min without changing CPP (42+/-2 mmHg). Both FS (10.7+/-1.2%) and LER (-16+/-4%) also increased. Benidipine increased cardiac NO levels (11+/-2 to 17+/-3 nmol/ml). The increases in CBF, FS, LER and cardiac NO levels due to benidipine were blunted by L-NAME. Benidipine increased cyclic GMP contents of the coronary artery of ischemic myocardium (139+/-13 to 208+/-15 fmol/mg protein), which was blunted by L-NAME. CONCLUSION Thus, we conclude that benidipine mediates coronary vasodilation and improves myocardial ischemia through NO-cyclic GMP-dependent mechanisms.


Circulation | 2000

Nifedipine-Induced Coronary Vasodilation in Ischemic Hearts Is Attributable to Bradykinin- and NO-Dependent Mechanisms in Dogs

Masafumi Kitakaze; Hiroshi Asanuma; Seiji Takashima; Tetsuo Minamino; Yasunori Ueda; Yasuhiko Sakata; Masanori Asakura; Shoji Sanada; Tsunehiko Kuzuya; Masatsugu Hori

BACKGROUND Dihydropyridine calcium channel blockers protect endothelial cells against ischemia and reperfusion injury, suggesting that nifedipine may increase the in vivo cardiac NO level and thus coronary blood flow (CBF) in ischemic hearts. We tested this hypothesis. METHODS AND RESULTS In open-chest dogs, coronary perfusion pressure (CPP) was reduced in the left anterior descending coronary artery so that CBF decreased to one third of the control level, and thereafter CPP was maintained constant (103+/-8 to 43+/-3 mm Hg, n=9). We obtained fractional shortening (FS) and lactate extraction ratio (LER) as indices of regional myocardial contraction and metabolism. Both FS (26.4+/-2.1% to 6.7+/-2.0%, n=9, P<0.001) and LER (32+/-6% to -37+/-5%, n=9, P<0.001) showed a decrease when CPP was reduced. After intracoronary infusion of nifedipine (4 microgram. kg(-1). min(-1)), CBF increased from 30+/-1 to 48+/-4 mL. 100 g(-1). min(-1) (P<0.01) without a change of CPP (n=9). Both FS (14.0+/-1.9%, n=9) and LER (-9+/-7%, n=9) also increased (P<0.01). Nifedipine increased the difference in the level of metabolites of NO (nitrate+nitrite; 9+/-3 to 25+/-5 nmol/mL, n=9, P<0.01) and bradykinin (22+/-5 to 58+/-4 pmol/mL, n=9, P<0.01) between coronary venous and arterial blood. L-NAME (an NO synthase inhibitor) or HOE-140 (a bradykinin receptor antagonist) attenuated (P<0.05) the increase in CBF (29+/-3 and 35+/-2 mL. 100 g(-1). min(-1), n=5 each), FS (4.8+/-0.6% and 6.9+/-1.7%, n=5 each), LER (-47+/-8% and -35+/-9%, n=5 each), and nitrate+nitrite (3+/-2 and 8+/-4 nmol/mL, n=5 each) due to nifedipine infusion. CONCLUSIONS These results indicate that the calcium channel blocker nifedipine mediates coronary vasodilation and improves myocardial ischemia through both bradykinin/NO-dependent and -independent mechanisms.


Journal of the American College of Cardiology | 2002

Amelioration of ischemia- and reperfusion-induced myocardial injury by the selective estrogen receptor modulator, raloxifene, in the canine heart.

Hisakazu Ogita; Koichi Node; Hiroshi Asanuma; Shoji Sanada; Yulin Liao; Seiji Takashima; Masanori Asakura; Hidezo Mori; Yoshiro Shinozaki; Masatsugu Hori; Masafumi Kitakaze

OBJECTIVES We sought to investigate whether raloxifene reduces ischemia-reperfusion injury and what mechanisms are involved in the cardioprotective effects. BACKGROUND Estradiol-17-beta reduces myocardial infarct size in ischemia-reperfusion injury. Raloxifene, a selective estrogen receptor modulator, demonstrates immediate coronary artery vasorelaxing effects. METHODS The myocardial ischemia-reperfusion model included anesthetized open-chest dogs after 90-min occlusion of the left anterior descending coronary artery (LAD) and subsequent 6-h reperfusion. Raloxifene and/or other drugs were infused into the LAD from 10 min before coronary occlusion to 1 h after reperfusion without an occlusion period. RESULTS Infarct size was reduced in the raloxifene (5 microg/kg per min) group compared with the control group (7.2 +/- 2.5% vs. 40.9 +/- 3.9% of the area at risk, p < 0.01). Either N(G)-nitro-L-arginine methyl ester (L-NAME), the inhibitor of nitric oxide (NO) synthase, or charybdotoxin, the blocker of Ca(2+)-activated K+ (K(Ca)) channels, partially attenuated the infarct size-limiting effect, and both of them completely abolished the effect. The incidence of ventricular fibrillation was also less in the raloxifene group than in the control group (11% vs. 44%, p < 0.05). Activity of p38 mitogen-activated protein (MAP) kinase increased with 15-min ischemia, and raloxifene pretreatment inhibited the activity. Myeloperoxidase activity of the 6-h reperfused myocardium was also attenuated by raloxifene. CONCLUSIONS These data demonstrate that raloxifene reduces myocardial ischemia-reperfusion injury by mechanisms dependent on NO and the opening of K(Ca) channels in canine hearts. Deactivation of p38 MAP kinase and myeloperoxidase by raloxifene may be involved in the cellular mechanisms of cardioprotection.


Nature Genetics | 2004

Lamr1 functional retroposon causes right ventricular dysplasia in mice

Yosh ihiro Asano; Seiji Takashima; Masanori Asakura; Yasunori Shintani; Yulin Liao; Tetsuo Minamino; Hiroshi Asanuma; Shoji Sanada; Jiyoong Kim; Akiko Ogai; Tomi Fukushima; Yumiko Oikawa; Ya sushi Okazaki; Yasufumi Kaneda; Manabu Sato; Jun-ichi Miyazaki; Soichiro Kitamura; Hitonobu Tomoike; Masafumi Kitakaze; Masatsugu Hori

Arrhythmogenic right ventricular dysplasia (ARVD) is a hereditary cardiomyopathy that causes sudden death in the young. We found a line of mice with inherited right ventricular dysplasia (RVD) caused by a mutation of the gene laminin receptor 1 (Lamr1). This locus contained an intron-processed retroposon that was transcribed in the mice with RVD. Introduction of a mutated Lamr1 gene into normal mice by breeding or by direct injection caused susceptibility to RVD, which was similar to that seen in the RVD mice. An in vitro study of cardiomyocytes expressing the product of mutated Lamr1 showed early cell death accompanied by alteration of the chromatin architecture. We found that heterochromatin protein 1 (HP1) bound specifically to mutant LAMR1. HP1 is a dynamic regulator of heterochromatin sites, suggesting that mutant LAMR1 impairs a crucial process of transcriptional regulation. Indeed, mutant LAMR1 caused specific changes to gene expression in cardiomyocytes, as detected by gene chip analysis. Thus, we concluded that products of the Lamr1 retroposon interact with HP1 to cause degeneration of cardiomyocytes. This mechanism may also contribute to the etiology of human ARVD.

Collaboration


Dive into the Hiroshi Asanuma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge