Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroshi Gemma is active.

Publication


Featured researches published by Hiroshi Gemma.


Plant Growth Regulation | 2003

Tamarindus indica L. leaf is a source of allelopathic substance

Syeda Shahnaz Parvez; Mohammad Masud Parvez; Eiji Nishihara; Hiroshi Gemma; Yoshiharu Fujii

The allelopathic potential of the Tamarindus indica L. leaf was investigated through bioassay guided studies using several weed and edible crop species. Both radicle and hypocotyl growth of all the plant species tested was strongly inhibited by the tamarind leaf using a sandwich method. The growth of weed species was reduced more than that of edible crop species. Among the weed species, barnyard grass followed by white clover, and in the edible crop species, lettuce followed by radish ranked top in terms of growth inhibition. Different concentrations of tamarind leaf crude water-soluble extract exhibited a strong inhibition in all the plant species tested and, by contrast, the magnitude of inhibition in the weed species was higher than in edible crop species and ranged from 30–75%. The 10% concentration of the tamarind leaf crude water-soluble extract was most potent against growth of seedlings. The concentrations of the nutrient components were linearly correlated with an increase in the concentration of tamarind leaf crude water-soluble extract. No significant changes in either pH or EC were found in the variations of different concentrations of tamarind leaf crude water-soluble extracts. As compared to control, growth of both radicle and hypocotyl in weed (barnyard grass and white clover) and in edible crop (lettuce and radish) species were significantly reduced when blended tamarind leaves at different concentrations were incorporated into the growth medium. The inhibitory magnitude increased with an increase in the concentration of the tamarind leaf. In terms of growth inhibition, among these tested plants, weed species particularly barnyard grass were most sensitive to the allelochemicals exuded from blended tamarind leaves. When the blended tamarind leaves were removed from the growth medium, all the seedlings grew quickly and the percentage of recovery was between 76–97% of the corresponding controls. Reduction in the fresh and dry weight of these 4 plant species was observed under the experimental conditions, and ranged between 33–42% and 40–53% in the radicle and hypocotyl, respectively. The fresh and dry weight, and total chlorophyll content declined significantly in the incorporated tamarind leaf treatments. Compared to the control, the highest drop in the chlorophyll content of 60% in barnyard grass was observed with the 10% concentration of the leaf treatment. These results clearly indicate that the tamarind leaf contains one or more strong biologically active allelochemical(s) that function as true growth regulator(s) and is involved in plant growth regulation, particularly in weed species.


Review of Scientific Instruments | 2011

Development of a mobile magnetic resonance imaging system for outdoor tree measurements

Takeshi Kimura; Yuto Geya; Yasuhiko Terada; Katsumi Kose; Tomoyuki Haishi; Hiroshi Gemma; Yoshihiko Sekozawa

By combining a 0.3 T permanent magnet with flexible rotation and translation mechanism, a probe with a local electromagnetic shielding, several electrical units, a mobile lift, and an electric wagon, a mobile magnetic resonance imaging (MRI) system was developed for outdoor tree measurements. 2D cross-sectional images of normal and diseased branches of a pear tree were acquired for measurements of T(1), T(2), proton density, and apparent diffusion constant (ADC). The ADC map clearly differentiated diseased from normal branches. A whole-day measurement of the ADC map demonstrated that microscopic water flow in the normal branch changed proportionally with solar radiation. Therefore, we have concluded that our mobile MRI system is a powerful tool for studies of plants in outdoor environments.


Journal of Magnetic Resonance | 2013

Longitudinal NMR parameter measurements of Japanese pear fruit during the growing process using a mobile magnetic resonance imaging system

Yuto Geya; Takeshi Kimura; Hirotaka Fujisaki; Yasuhiko Terada; Katsumi Kose; Tomoyuki Haishi; Hiroshi Gemma; Yoshihiko Sekozawa

Longitudinal nuclear magnetic resonance (NMR) parameter measurements of Japanese pear fruit (Pyrus pyrifolia Nakai, Kosui) were performed using an electrically mobile magnetic resonance imaging (MRI) system with a 0.2 T and 16 cm gap permanent magnet. To measure the relaxation times and apparent diffusion coefficients of the pear fruit in relation to their weight, seven pear fruits were harvested almost every week during the cell enlargement period and measured in a research orchard. To evaluate the in situ relaxation times, six pear fruits were longitudinally measured for about two months during the same period. The measurements for the harvested samples showed good agreement with the in situ measurements. From the measurements of the harvested samples, it is clear that the relaxation rates of the pear fruits linearly change with the inverse of the linear dimension of the fruits, demonstrating that the relaxation mechanism is a surface relaxation. We therefore conclude that the mobile MRI system is a useful device for measuring the NMR parameters of outdoor living plants.


Plant Growth Regulation | 2004

Differential allelopathic expression of bark and seed of Tamarindus indica L.

Syeda Shahnaz Parvez; Mohammad Masud Parvez; Yoshiharu Fujii; Hiroshi Gemma

Allelopathic performance of the bark and seed of Tamarindus indica L. tree was evaluated through bioassay-guided studies using seven common agronomic crops (asparagus, cucumber, lettuce, radish, sesame, tomato and welsh onion) and seven weed species (barnyard grass, Chinese milk vetch, perennial ryegrass, phacelia, timothy grass, white clover and wild ginger) under laboratory conditions. As demonstrated by a sandwich method, the bark of the tamarind tree caused strong growth inhibition (compared to the corresponding controls) in both radicles and hypocotyls of the species tested, and the inhibitory effect was highest in barnyard grass (52–65%) and lowest in welsh onion (19–13%). The crude-water soluble extracts of bark at different concentrations (1, 5 and 10%) (w/v) exhibited a strong growth inhibition in all the plant species tested, and a proportional increase in the percentage of growth inhibition was observed with an increase in the concentrations of the extracts. The magnitude of inhibition in weed species was higher (5–60%) than those of agronomic crop species (3–40%). The growth of all the weed species tested was strongly inhibited (17–56%), while the agronomic crop species showed both inhibited (5–21%) and stimulated (5–27%) growth due to the effect of crude-water soluble exudates of tamarind seed. Among the agronomic crop species tested, lettuce (22–27%) followed by radish (20–25%) and sesame (5–8%) showed stimulatory growth with the crude-water soluble exudates of seed. In the pot culture experiments using four agronomic crops (lettuce, radish, tomato and cucumber) and two weed species (barnyard grass and white clover), spraying of crude-water soluble extracts of tamarind seed-coat at three different concentrations (1, 5 and 10%) (w/v) showed that the growth of lettuce (35–62%) and radish (32–56%) was stimulated, while all other species tested showed growth inhibition (29–61%). When the spraying of crude extracts of seed-coat was turned off, the growth of both lettuce and radish continued to be stimulated (4–7%) and all other previously inhibited species recovered well, the recovery percentage ranging between 78 and 82%. However, when spraying of crude extracts of seed-coat was continued, growth increased (10–14%) in lettuce and radish, and reduced (37–76%) in four other species tested. The inhibitory or stimulatory effects of the crude extracts on agronomic crop and weed species were higher in the radicle than the hypocotyl and reached a peak with 10% (w/v) concentrations. These results clearly demonstrated the differential allelopathic effects (inhibitory and excitatory) of bark and seed of tamarind tree in the species tested. Thus, it is evident that these two organs contain certain biologically active true growth regulator(s) and are either additively or synergistically involved in the plant-specific expression, particularly by the seed-coat.


Plant Cell Reports | 2009

Differential adaptation of high- and low-chill dormant peaches in winter through aquaporin gene expression and soluble sugar content

Suravoot Yooyongwech; Sumiko Sugaya; Yoshihiko Sekozawa; Hiroshi Gemma

Plants have their own mechanisms for overcoming various stresses. In cold regions, plants are subject to stress and must enter an inherent dormancy, through several complex mechanisms, if they are to continue to exist. In winter, regulation of tonoplast and plasma membrane aquaporin genes differed in the bud cushions of the high-chill peach (Prunus persica L. Batsch) cv. Kansuke Hakuto and the low-chill peach cv. Coral. In December and January, when the temperature was lowest (around 2°C), the increased expression of Pp-γTIP1 and Pp-PIP1 seen in the bud cushions of Kansuke Hakuto may have been related to the concomitant high-soluble sugar content of the cushions of this cultivar. This relationship may have made the cells highly stable and relatively unaffected by low-temperature stress owing to the presence of “glasses” that prevented ice nucleation. However, a simpler form of cold protection regulation seemed to occur in Coral, in which there was no winter increase in Pp-γTIP1 and Pp-PIP1 mRNA and a slow decline in total soluble sugar content in December and January. These results suggested that Pp-γTIP1 and Pp-PIP1, respectively, play important roles in intra- and intercellular membrane transport, enhancing cold resistance in the bud cushions of high-chill cultivars. In addition, Pp-δTIP1 and Pp-PIP2 mRNA increased at the end of endodormancy in both cultivars. This change may be induced by endodormancy-release signals and the resumption of bud activity in both cultivars.


Plant Growth Regulation | 2001

Effect of abscisic acid (ABA) on sugar accumulation in the flesh tissue of peach fruit at the start of the maturation stage

Kenji Kobashi; Sumuko Sugaya; Hiroshi Gemma; Shuichi Iwahori

Experiments were conducted on14C-sorbitol, fructose, and glucose uptakeinto flesh discs, and sorbitol efflux from thediscs, with and without ABA application toexamine the effect of abscisic acid (ABA) onsugar accumulation in peach fruit flesh at thestart of the maturation stage in relation tomembrane transport. Total uptake of14C-sorbitol, fructose, and glucose intoflesh discs was effectively promoted by ABA ata concentration of 10−5M. PCMBS(p-chloromercuribenzensulfonicacid)-sensitive uptake, which was considered ascarrier-mediated uptake, of sorbitol into thediscs was clearly stimulated by ABA at10−5M, compared with glucose andfructose uptake. Sorbitol efflux from the discsacross the tonoplast was restricted by ABA at10−5M. ABA application todeveloping fruit increased sugar accumulationin the fruit. Estimated ABA concentration inthis fruit was approximately 10−5M. These results indicate that sugar accumulationin peach fruit flesh is stimulated by ABA at aconcentration of 10−5M both invitro and in vivo. ABA stimulatesuptake of sugars, especially sorbitol, into theflesh by enhancing carrier-mediated transportpossibly across both tonoplast and plasmamembrane.


Plant Growth Regulation | 2003

Allelopathic competence of Tamarindus indica L. root involved in plant growth regulation

Syeda Shahnaz Parvez; Mohammad Masud Parvez; Yoshiharu Fujii; Hiroshi Gemma

The allelopathic competence of tamarind root was evaluated using several weed and edible crop species under both laboratory and greenhouse conditions. Bio-assay guided studies using agar and soil medium revealed that the growth of both radicle and hypocotyl were strongly inhibited under both conditions. Accelerated root exudation observed with an increase in the age of tamarind seedlings caused a high magnitude of growth inhibition of the plant species tested by the plant-box method. Tamarind seedlings at 21-DAG (days after germination) exerted the strongest inhibitory effect (85.0–95.1%) on the growth of the plant species tested. Root dry weight of tamarind seedlings in the plant-box method experiment was highly correlated (R2 values more than 0.92) with the percentage of growth inhibition. The growth of species grown in the soil under the tamarind tree was inhibited by 85.3–97.1% in the greenhouse. The percentage of growth inhibition declined by 18.4–22.0% (as compared to the natural soil condition) when autoclaved soil of the same trees was used for bio-assay of plant species by the soil-agar sandwich method. This indicates that ca. a 20% increase in response was associated with the allelopathic activity of tamarind root exuded into the natural soil and was due to the effects of soil microbes and soil texture. In terms of growth inhibition of the plant species tested, the root zone soil of the tamarind tree showed stronger inhibitory effects (80.1–94.2%) than the rhizosphere soil, as determined by the soil-agar sandwich method. In all cases, growth inhibition especially in the radicle was higher in the weed species than the edible crop species. Our observations clearly indicate that tamarind root exudate has allelochemical competence and this contributes to a weed free environment around the tamarind tree.


Journal of Horticultural Science & Biotechnology | 2008

Effect of oscillating temperature on the expression of two aquaporin genes (Pp-×TIP1,Pp-PIP2) involved in regulating intercellular water status in flower buds of peach

Suravoot Yooyongwech; A. K. Horigane; M. Yoshida; Y. Sekozawa; Sumiko Sugaya; Hiroshi Gemma

Summary We studied the effects of temperature changes on the water status of floral buds in peach during ecodormancy by an analysis of aquaporin (AQP) gene expression and magnetic resonance imaging of the upper part of the bud, the bud base, the bud trace, and the bud cushion. Expression levels of mRNAs of the water channel genes, Pp- TIP1 and Pp-PIP2, in the tonoplast and plasma membrane reflected the temperature oscillations: high temperatures increased mRNA levels and low temperatures decreased them, irrespective of the duration of either treatment.The T2 relaxation time of the buds, especially in the floral primordia, was significantly longer under oscillating temperature conditions than under a consistently high temperature. The period of high-temperature during the oscillating temperature regime accelerated water flow in the bud, but delayed bud growth. Disruption of the water balance by excessive water in the primordia under oscillating temperatures may be one reason for the delay in bud growth.


Journal of Horticultural Science & Biotechnology | 2011

Influence of 1-methylcyclopropene on pectic enzyme activities, gene expression, and cell wall modification in papaya (Carica papaya cv. ‘Sunrise’) fruit

W. Krongyut; E. B. Esguerra; J. S. Maninang; Sumiko Sugaya; Hiroshi Gemma; V. Srilaong; S. Kanlayanarat

SUMMARY ‘Sunrise’ papaya fruit harvested at two stages of maturity [colour break (< 10% yellow peel colour) and 25% yellow peel colour] were treated with 100 nl l–1 1-methylcyclopropene (1-MCP) to determine its effects on ripening, on the activities and levels of gene expression of polygalacturonase (PG), pectin methyl esterase (PME), and βgalactosidase ( βGal), and on the degradation of cell wall components. 1-MCP delayed ripening and the onset of the climacteric, although the peak in the respiration rate was almost the same as that in untreated control fruit. Colour-break fruit treated with 1-MCP exhibited a continuous increase in ethylene production, but at a lower rate than in control fruit. Consequently, 1-MCP-treated fruit ripened with a concomitant reduction in firmness, which was accompanied by an increase in PG and βGal enzyme activities and gene expression. On the other hand, fruit treated with 1-MCP at the 25% yellow stage exhibited lower levels of ethylene production and developed pulp with a rubbery texture at the ripe stage which was attributed to reduced PG, βGal, and PME enzyme activities and gene expression. This was consistent with the higher level of cell wall polysaccharides measured in 1-MCP-treated fruit. The above results indicated that ‘Sunrise’ papaya fruit can be treated with 1-MCP at the colour break stage since they have a greater capacity to recover from the effects of 1-MCP than fruit treated at the 25% yellow stage.


Scientia Horticulturae | 2005

Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition

Kentaro Mori; Sumiko Sugaya; Hiroshi Gemma

Collaboration


Dive into the Hiroshi Gemma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshiharu Fujii

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge