Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroshi Hinou is active.

Publication


Featured researches published by Hiroshi Hinou.


Analytical Chemistry | 2010

Glycoblotting-Assisted O-Glycomics: Ammonium Carbamate Allows for Highly Efficient O-Glycan Release from Glycoproteins

Yoshiaki Miura; Kentaro Kato; Yasuhiro Takegawa; Masaki Kurogochi; Jun-ichi Furukawa; Yasuro Shinohara; Noriko Nagahori; Maho Amano; Hiroshi Hinou; Shin-Ichiro Nishimura

Glycoblotting, high throughput method for N-glycan enrichment analysis based on the specific chemical ligation between aminooxy/hydrazide-polymers/solids and reducing N-glycans released from whole serum and cellular glycoproteins, was proved to be feasible for selective enrichment analysis of O-glycans of common (mucin) glycoproteins. We established a standard protocol of glycoblotting-based O-glycomics in combination with nonenzymatic chemical treatment to release reducing O-glycans predominantly from various glycoprotein samples. It was demonstrated that the nonreductive condition employing a simple ammonium salt, ammonium carbamate, made glycoblotting-based enrichment analysis of O-glycans possible without significant loss or unfavorable side reactions. A general workflow of glycoblotting using a hydrazide bead (BlotGlyco H), on-bead chemical manipulations, and subsequent mass spectrometry allowed for rapid O-glycomics of human milk osteopontin (OPN) and urinary MUC1 glycoproteins purified from healthy donors in a quantitative manner. It was revealed that structures of O-glycans in human milk OPN were varied with habitual fucosylation and N-acetyllactosamine units. It was also suggested that purified human urinary MUC1 was modified preferentially by sialylated O-glycans (94% of total) with 7:3 ratio of core 1 to core 2 type O-glycans. Versatility of the present strategy is evident because this method was proved to be suited for the enrichment analysis of general biological and clinical samples such as human serum and urine, cultured human cancer cells, and formalin-fixed paraffin-embedded tissue sections. It is our belief that the present protocols would greatly accelerate discovery of disease-relevant O-glycans as potential biomarkers.


Journal of the American Chemical Society | 2009

An essential epitope of anti-MUC1 monoclonal antibody KL-6 revealed by focused glycopeptide library.

Naoki Ohyabu; Hiroshi Hinou; Takahiko Matsushita; Ryukou Izumi; Hiroki Shimizu; Keiko Kawamoto; Yoshito Numata; Hiroko Togame; Hiroshi Takemoto; Hirosato Kondo; Shin-Ichiro Nishimura

Human serum Krebs von den Lungen-6 (KL-6) antigen, a high-molecular-weight glycoprotein classified as a polymorphic epithelial mucin (MUC1), is a biomarker of diseases such as interstitial pneumonia, lung adenocarcinoma, breast cancer, colorectal adenocarcinoma, and hepatocellular carcinoma. Anti-KL-6 monoclonal antibody (anti-KL-6 MAb) is therefore a potential diagnostic and therapeutic reagent. Although glycosylation at Thr/Ser residues of the tandem-repeating MUC1 peptides appears to determine the disease-associated antigenic structures of KL-6, an essential epitope structure recognized by anti-KL-6 MAb remains unclear. In the present study, a novel compound library of synthetic MUC1 glycopeptides allowed the first rapid and precise evaluation of the specific epitope structure of anti-KL-6 MAb by combined use of a tailored glycopeptides library and common ELISA protocol. We demonstrated that the minimal antigenic structure, an essential epitope, recognized by anti-KL-6 MAb is a heptapeptide sequence Pro-Asp-Thr-Arg-Pro-Ala-Pro (PDTRPAP), in which the Thr residue is modified by Neu5Ac alpha2,3Gal beta1,3GalNAc alpha (2,3-sialyl T antigen, core 1-type O-glycan). Anti-KL-6 MAb did not bind with other tumor-relevant antigens, such as GalNAc alpha (Tn), Neu5Ac alpha2,6GalNAc alpha (STn), and Gal beta1,3GalNAc alpha (T), except for Neu5Ac alpha2,3Gal beta1,3(Neu5Ac alpha2,6)GalNAc alpha (2,3/2,6-disialyl T). However, anti-KL-6 MAb could not differentiate the above minimal antigenic glycopeptide from some core 2-based glycopeptides involving this crucial epitope structure and showed a similar binding affinity toward these compounds, indicating that branching at the O-6 position of GalNAc residue does not influence the interaction of anti-KL-6 MAb with some MUC1 glycoproteins involving an essential epitope. Actually, anti-KL-6 MAb reacts with 2,3/2,6-disialyl T having a 2,3-sialyl T component. This is why anti-KL-6 MAb often reacts with various kinds of tumor-derived MUC1 glycoproteins as well as a clinically important MUC1 glycoprotein biomarker of interstitial pneumonia, namely KL-6, originally discovered as a circulating pulmonary adenocarcinoma-associated antigen. In other words, combined use of anti-KL-6 MAb and some probes that can differentiate the sugars substituted at the O-6 position of the GalNAc residue in MUC1 glycopeptides including the PDTRPAP sequence might be a promising diagnostic protocol for individual disease-specific biomarkers. It was also revealed that glycosylation at neighboring Thr/Ser residues outside the immunodominant PDTRPAP motif strongly influences the interaction between anti-KL-6 MAb and MUC1 glycopeptides involving the identified epitope. Our novel strategy will greatly facilitate the processes for the identification of the tumor-specific and strong epitopes of various known anti-MUC1 MAbs and allow for their practical application in the generation of improved antibody immunotherapeutics, diagnostics, and MUC1-based cancer vaccines.


Tetrahedron Letters | 2000

Efficient convergent synthesis of a trans-fused 6-6-6-6-membered tetracyclic ether ring system

Goh Matsuo; Hiroshi Hinou; Hiroyuki Koshino; Toshiro Suenaga; Tadashi Nakata

Abstract A very efficient convergent strategy for the construction of the trans -fused 6-6-6-6-membered tetracyclic ether ring system was developed based on the acetylide-triflate coupling of two tetrahydropyrans, oxidation of the alkyne group to an α-diketone, double cyclization to 6,6,6,6-membered tetracyclic diacetal, and stereoselective reduction of the diacetal with Et 3 SiH–TMSOTf.


Biochemistry | 2009

Functional Neoglycopeptides: Synthesis and Characterization of a New Class of MUC1 Glycoprotein Models Having Core 2-Based O-Glycan and Complex-Type N-Glycan Chains

Takahiko Matsushita; Reiko Sadamoto; Naoki Ohyabu; Hideki Nakata; Masataka Fumoto; Naoki Fujitani; Yasuhiro Takegawa; Takeshi Sakamoto; Masaki Kurogochi; Hiroshi Hinou; Hiroki Shimizu; Takaomi Ito; Kentarou Naruchi; Hiroko Togame; Hiroshi Takemoto; Hirosato Kondo; Shin-Ichiro Nishimura

An efficient protocol for the construction of MUC1-related glycopeptide analogues having complex O-glycan and N-glycan chains was established by integrating chemical and enzymatic approaches on the functional polymer platforms. We demonstrated the feasibility of sortase A-mediated ligation between two glycopeptide segments by tagging with signal peptides, LPKTGLR and GG, at each C- or N-terminal position. Structural analysis of the macromolecular N,O-glycopeptides was performed by means of ESI-TOFMS (MS/MS) equipped with an electron-captured dissociation device. Immunological assay using MUC1 glycopeptides synthesized in this study revealed that N-glycosylation near the antigenic O-glycosylated PDTR motif did not disturb the interaction between the anti-MUC1 monoclonal antibody and this crucial O-glycopeptide moiety. NMR study indicated that the N-terminal immunodominant region [Ala-Pro-Asp-Thr(O-glycan)-Arg] forms an inverse gamma-turn-like structure, while the C-terminal region composed of N-glycopeptide and linker SrtA-peptide was proved to be an independently random structure. These results indicate that the bulky O- and N-glycan chains can function independently as disease-relevant epitopes and ligands for carbohydrate-binding proteins, when both are combined by an artificial intervening peptide having a possible effect of separating N- and C-terminal regions. The present strategy will greatly facilitate rapid synthesis of multiply functionalized complex neoglycopeptides as new types of convenient tools or models for the investigation of thhe structure-function relationship of various glycoproteins and development of novel class glycopeptide-based biopharmaceuticals, drug delivery systems, and biomedical materials.


Journal of the American Chemical Society | 2010

Chemical synthesis, folding, and structural insights into O-fucosylated epidermal growth factor-like repeat 12 of mouse Notch-1 receptor.

Kazumi Hiruma-Shimizu; Kensaku Hosoguchi; Yan Liu; Naoki Fujitani; Takashi Ohta; Hiroshi Hinou; Takahiko Matsushita; Hiroki Shimizu; Ten Feizi; Shin-Ichiro Nishimura

Notch receptors are cell surface glycoproteins that play key roles in a number of developmental cascades in metazoa. The extracellular domains of Notch-1 receptors are composed of 36 tandem epidermal growth factor (EGF)-like repeats, many of which are modified at highly conserved consensus sites by an unusual form of O-glycan, with O-fucose. The O-fucose residues on certain EGF repeats may be elongated. In mammalian cells this can be a tetrasaccharide, Siaα2,3Galβ1,4GlcNAcβ1,3Fucα1→. This elongation process is initiated by the action of O-fucose-specific β1,3 N-acetylglucosaminyltransferases of the Fringe family. There is evidence that the addition of GlcNAc by Fringe serves as an essential modulator of the interaction of Notch with its ligands and the triggering of activation. Here we describe the efficient synthesis, folding, and structural characterization of EGF repeat 12 (EGF 12) of a mouse Notch-1 receptor bearing different O-fucose glycan chains. We demonstrate that the three disulfide bonds, Cys(456)-Cys(467) (C1-C3), Cys(461)-Cys(476) (C2-C4), and Cys(478)-Cys(487) (C5-C6) were correctly formed in the nonglycosylated as well as the O-fucosylated forms of EGF 12. Three-dimensional structural studies by NMR reveal that the methyl group of fucose is in close contact with ILe(475), Met(477), Pro(478) residues and this stabilizes the conformation of the antiparallel β-sheet of EGF 12. The addition of the GlcNAc residue on O-fucosylated EGF 12 induces a significant conformational change in the adjacent tripeptide sequence, Gln(462)Asn(463)Asp(464), which is a motif involved in the natural, enzymatic O-fucosylation at the conserved site (Cys(461)X(4)Ser/ThrCys(467)).


Journal of the American Chemical Society | 2010

Artificial Golgi Apparatus: Globular Protein-like Dendrimer Facilitates Fully Automated Enzymatic Glycan Synthesis

Takahiko Matsushita; Izuru Nagashima; Masataka Fumoto; Takashi Ohta; Kuriko Yamada; Hiroki Shimizu; Hiroshi Hinou; Kentaro Naruchi; Takaomi Ito; Hirosato Kondo; Shin-Ichiro Nishimura

Despite the growing importance of synthetic glycans as tools for biological studies and drug discovery, a lack of common methods for the routine synthesis remains a major obstacle. We have developed a new method for automated glycan synthesis that employs the enzymatic approach and a dendrimer as an ideal support within the chemical process. Recovery tests using a hollow fiber ultrafiltration module have revealed that monodisperse G6 (MW = 58 kDa) and G7 (MW = 116 kDa) poly(amidoamine) dendrimers exhibit a similar profile to BSA (MW = 66 kDa). Characteristics of the globular protein-like G7 dendrimer with high solubility and low viscosity in water greatly enhanced throughput and efficiency in automated synthesis while random polyacrylamide-based supports entail significant loss during the repetitive reaction/separation step. The present protocol allowed for the fully automated enzymatic synthesis of sialyl Lewis X tetrasaccharide derivatives over a period of 4 days in 16% overall yield from a simple N-acetyl-d-glucosamine linked to an aminooxy-functionalized G7 dendrimer.


Chemistry: A European Journal | 2011

An Efficient Approach for the Characterization of Mucin‐Type Glycopeptides: The Effect of O‐Glycosylation on the Conformation of Synthetic Mucin Peptides

Ryo Hashimoto; Naoki Fujitani; Yasuhiro Takegawa; Masaki Kurogochi; Takahiko Matsushita; Kentaro Naruchi; Naoki Ohyabu; Hiroshi Hinou; Xiao-Dong Gao; Naomi Manri; Hiroyuki Satake; Akihito Kaneko; Takeshi Sakamoto; Shin-Ichiro Nishimura

Despite the growing importance of mucin core O-glycosylation in many biological processes including the protection of epithelial cell surfaces, the immune response, cell adhesion, inflammation, and tumorigenesis/metastasis, the regulation mechanism and conformational significance of the multiple introduction of α-GalNAc residues by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAcTs) remains unclear. Here we report an efficient approach by combining MS and NMR spectroscopy that allows for the identification of O-glycosylation site(s) and the effect of O-glycosylation on the peptide backbone structures during enzymatic mucin domain assembly by using an isoform UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T2 (ppGalNAcT2) in vitro. An electron-capture dissociation device in a linear radio-frequency quadrupole ion trap (RFQ-ECD) combined with a time-of-flight (TOF) mass spectrometer was employed for the identification of Thr/Ser residues occupied by α-GalNAc branching among multiple and potential O-glycosylation sites in the tandem repeats of human mucin glycoproteins MUC4 (Thr-Ser-Ser-Ala-Ser-Thr-Gly-His-Ala-Thr-Pro-Leu-Pro-Val-Thr-Asp) and MUC5AC (Pro-Thr-Thr-Val-Gly-Ser-Thr-Thr-Val-Gly). In the present study, O-glycosylation was initiated specifically at Thr10 in naked MUC4 peptide and additional introduction of α-GalNAc proceeded preferentially but randomly at three other Thr residues to afford densely glycosylated MUC4 containing six α-GalNAc residues at Thr1, Ser2, Ser5, Thr6, Thr10, and Thr15. On the contrary, O-glycosylation of naked MUC5AC peptide occurred predominantly at consecutive Thr residues and led to MUC5AC with four α-GalNAc residues at Thr2, Thr3, Thr7, and Thr8. The solution structures determined by NMR spectroscopic studies elicited that the preferential introduction of α-GalNAc at Thr10 of MUC4 stabilizes specifically a β-like extended backbone structure at this area, whereas other synthetic models with a single α-GalNAc residue at Thr1, Thr6, or Thr15 did not exhibit any converged three-dimensional structure at the proximal peptide moiety. Such conformational impact on the underlying peptides was proved to be remarkable in the glycosylation at the consecutive Thr residues of MUC5AC.


Journal of Medicinal Chemistry | 2010

An efficient approach to the discovery of potent inhibitors against glycosyltransferases.

Kensaku Hosoguchi; Takahiro Maeda; Jun-ichi Furukawa; Yasuro Shinohara; Hiroshi Hinou; Mitsuaki Sekiguchi; Hiroko Togame; Hiroshi Takemoto; Hirosato Kondo; Shin-Ichiro Nishimura

We describe a standardized approach for searching potent and selective inhibitors of glycosyltransferases by high throughput quantitative MALDI-TOFMS-based screening of focused compound libraries constructed by 1,3-dipolar cycloaddition of the desired azidosugar nucleotides with various alkynes. An aminooxy-functionalized reagent with a stable isotope was conjugated with oligosaccharides to afford glycopeptides as acceptor substrates with improved ion sensitivity. Enhanced ionization potency of new substrates allowed for MALDI-TOFMS-based facile and quantitative analysis of enzymatic glycosylation in the presence of glycosyl donor substrates. A non-natural synthetic sugar nucleotide was identified to be the first highly specific inhibitor for rat recombinant alpha2,3-(N)-sialyltransferase (alpha2,3ST, IC(50) = 8.2 microM), while this compound was proved to become a favorable substrate for rat recombinant alpha2,6-(N)-sialyltransferase (alpha2,6ST, K(m) = 125 microM). Versatility of this strategy was demonstrated by identification of two selective inhibitors for human recombinant alpha1,3-fucosyltransferase V (alpha1,3-FucT, K(i) = 293 nM) and alpha1,6-fucosyltransferase VIII (alpha1,6-FucT, K(i) = 13.8 microM).


Biochemistry | 2013

Site-Specific Conformational Alteration Induced by Sialylation of MUC1 Tandem Repeating Glycopeptides at an Epitope Region for the Anti-KL-6 Monoclonal Antibody

Takahiko Matsushita; Naoki Ohyabu; Naoki Fujitani; Kentaro Naruchi; Hiroki Shimizu; Hiroshi Hinou; Shin-Ichiro Nishimura

Protein O-glycosylation is an essential step for controlling structure and biological functions of glycoproteins involving differentiation, cell adhesion, immune response, inflammation, and tumorigenesis and metastasis. This study provides evidence of site-specific structural alteration induced during multiple sialylation at Ser/Thr residues of the tandem repeats in human MUC1 glycoprotein. Systematic nuclear magnetic resonance (NMR) study revealed that sialylation of the MUC1 tandem repeating glycopeptide, Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala with core 2-type O-glycans at five potential glycosylation sites, afforded a specific conformational change at one of the most important cancer-relevant epitopes (Pro-Asp-Thr-Arg). This result indicates that disease-relevant epitope structures of human epithelial cell surface mucins can be altered both by the introduction of an inner GalNAc residue and by the distal sialylation in a peptide sequence-dependent manner. These data demonstrate the feasibility of NMR-based structural characterization of glycopeptides synthesized in a chemical and enzymatic manner in examining the conformational impact of the distal glycosylation at multiple O-glycosylation sites of mucin-like domains.


Biochimica et Biophysica Acta | 2014

A straightforward protocol for the preparation of high performance microarray displaying synthetic MUC1 glycopeptides

Takahiko Matsushita; Wataru Takada; Kota Igarashi; Kentaro Naruchi; Risho Miyoshi; Fayna Garcia-Martin; Maho Amano; Hiroshi Hinou; Shin-Ichiro Nishimura

BACKGROUND Human serum MUC1 peptide fragments bearing aberrant O-glycans are secreted from columnar epithelial cell surfaces and known as clinically important serum biomarkers for the epithelial carcinoma when a specific monoclonal antibody can probe disease-relevant epitopes. Despite the growing importance of MUC1 glycopeptides as biomarkers, the precise epitopes of most anti-MUC1 monoclonal antibodies remains unclear. METHODS A novel protocol for the fabrication of versatile microarray displaying peptide/glycopeptide library was investigated for the construction of highly sensitive and accurate epitope mapping assay of various anti-MUC1 antibodies. RESULTS Selective imine-coupling between aminooxy-functionalized methacrylic copolymer with phosphorylcholine unit and synthetic MUC1 glycopeptides-capped by a ketone linker at N-terminus provided a facile and seamless protocol for the preparation of glycopeptides microarray platform. It was demonstrated that anti-KL-6 monoclonal antibody shows an extremely specific and strong binding affinity toward MUC1 fragments carrying sialyl T antigen (Neu5Acα2,3Galβ1,3GalNAcα1→) at Pro-Asp-Thr-Arg motif when compared with other seven anti-MUC1 monoclonal antibodies such as VU-3D1, VU-12E1, VU-11E2, Ma552, VU-3C6, SM3, and DF3. The present microarray also uncovered the occurrence of IgG autoantibodies in healthy human sera that bind specifically with sialyl T antigen attached at five potential O-glycosylation sites of MUC1 tandem repeats. CONCLUSION We established a straightforward strategy toward the standardized microarray platform allowing highly sensitive and accurate epitope mapping analysis by reducing the background noise due to nonspecific protein adsorption. GENERAL SIGNIFICANCE The present approach would greatly accelerate the discovery research of new class autoantibodies as well as the development of therapeutic mAbs reacting specifically with disease-relevant epitopes.

Collaboration


Dive into the Hiroshi Hinou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroki Shimizu

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masataka Fumoto

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge