Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroshi Ishizaka is active.

Publication


Featured researches published by Hiroshi Ishizaka.


Euphytica | 1995

Interspecific hybrids of Cyclamen persicum Mill. and C. purpurascens Mill. produced by ovule culture

Hiroshi Ishizaka; Junjiro Uematsu

SummaryInterspecific crosses were made to introduce the scent of flowers of C. purpurascens into C. persicum cultivars and ovule culture was used to rescue the abortive hybrid embryos. Cultivars of C. persicum diploid (CPD, 2n=2×=48) and C. persicum tetraploid (CPT, 2n=4×=96) were the pistillate parents and wild species of C. purpurascens (CP, 2n=34) were staminate parents. After pollination, crossed ovaries were collected periodically and examined using paraffin sections. Histological observations suggested that both hybrid ovules of CPD x CP and CPT x CP should be transferred to culture medium 35 days after pollination. Based up on this observation, crossed ovaries were collected 28 days after pollination and ovules with placenta were transferred to MS (1962) medium containing 3% sucrose. These ovules were cultured in the dark at 25° C. The hybrids (2n=41) derived from CPD x CP had the scent of C. purpurascens, whereas the hybrids (2n=65) derived from CPT x CP had the scent of C. persicum. Although both hybrids had complete genomes from the parents and produced a few viable pollen grains, they failed to yield viable seeds by self- and cross-pollination with fertile pollen grains of C. persicum cultivars.


Planta | 2011

Isolation and characterization of the fragrant cyclamen O-methyltransferase involved in flower coloration

Yusuke Akita; Satoshi Kitamura; Yoshihiro Hase; Issay Narumi; Hiroshi Ishizaka; Emiko Kondo; Naoko Kameari; Masayoshi Nakayama; Natsu Tanikawa; Yasumasa Morita; Atsushi Tanaka

Anthocyanin O-methyltransferase (OMT) is one of the key enzymes for anthocyanin modification and flower pigmentation. We previously bred a novel red-purple-flowered fragrant cyclamen (KMrp) from the purple-flowered fragrant cyclamen ‘Kaori-no-mai’ (KM) by ion-beam irradiation. Since the major anthocyanins in KMrp and KM petals were delphinidin 3,5-diglucoside and malvidin 3,5-diglucoside, respectively, inactivation of a methylation step in the anthocyanin biosynthetic pathway was indicated in KMrp. We isolated and compared OMT genes expressed in KM and KMrp petals. RT-PCR analysis revealed that CkmOMT2 was expressed in the petals of KM but not in KMrp. Three additional CkmOMTs with identical sequences were expressed in petals of both KM and KMrp. Genomic PCR analysis revealed that CkmOMT2 was not amplified from the KMrp genome, indicating that ion-beam irradiation caused a loss of the entire CkmOMT2 region in KMrp. In vitro enzyme assay demonstrated that CkmOMT2 catalyzes the 3′ or 3′,5′ O-methylation of the B-ring of anthocyanin substrates. These results suggest that CkmOMT2 is functional for anthocyanin methylation, and defective expression of CkmOMT2 is responsible for changes in anthocyanin composition and flower coloration in KMrp.


Euphytica | 1995

Amphidiploids between Cyclamen persicum Mill. and C. purpurascens Mill. induced by treating ovules with colchicine in vitro and sesquidiploids between the amphidiploid and the parental species induced by conventional crosses

Hiroshi Ishizaka; Junjiro Uematsu

SummaryWe cultured colchicine-treated hybrid ovules in vitro to produce fertile amphidiploids of C. persicum (2n=2x=48. referred to as AA) × C. purpurascens (2n=2x=34, referred to as BB). Seedlings and mature plants were obtained from the ovules without colchicine and those exposed to 50 mg/l colchicine for 5, 10 and 15 days, whereas they were not obtained from the ovules exposed to 50 mg/l colchicine for 20 days and 500 mg/l for 5, 10, 15 and 20 days. Although 8 mature hybrids derived from the ovules without colchicine produced a few fertile pollen grains, they failed to produce viable seeds by self-fertilization. The hybrids had 41 somatic chromosomes. Four and 3 mature plants were derived from ovules exposed to 50 mg/l colchicine for 10 and 15 days, respectively. One each among 4 and 3 mature plants showed a high frequency of pollen grain fertility, produced several seeds by self-fertilization, and had 82 somatic chromosomes which is twice the number of hybrid chromosomes (2n=41, AB). These findings indicated that these plants are amphidiploids (2n=82, AABB) between C. persicum and C. purpurascens. Three and 2 viable seeds were derived by the conventional crosses of diploid C. persicum × the amphidiploid and the amphidiploid × C. purpurascens, respectively. Flowering plants that developed from the seeds of diploid C. persicum × the amphidiploid were barely fertile and had 65 somatic chromosomes (2n=65, AAB), whereas those that developed from the seeds of the amphidiploid × C. purpurascens were barely fertile and had 58 somatic chromosomes (2n=58, ABB). The somatic chromosomes indicated that these plants are probably sesquidiploids between the amphidiploid and either C. persicum or C. purpurascens. The interspecific cross-breeding of cyclamen using the amphidiploids and the sesquidiploids is discussed.


Journal of Horticultural Science & Biotechnology | 2010

Comparative analysis of floral pigmentation between wild-type and white-flowered varieties of Cyclamen graecum.

Yusuke Akita; Hiroshi Ishizaka; Masayoshi Nakayama; A. Shimada; Satoshi Kitamura; Yoshihiro Hase; Issay Narumi; Atsushi Tanaka

Summary The flower colour of Cyclamen graecum gra6 (wild-type) is pink-purple in the main part of the petal, referred to as the ‘slip’, and deep purple at the petal base, referred to as the ‘eye’. On the other hand, flowers of C. graecum gra50 (a white-flowered variant) exhibit a white colour in both the ‘slip’ and ‘eye’ regions. In this study, the relationship between floral pigmentation and the expression of several anthocyanin biosynthesis genes was investigated in C. graecum gra6 and gra50. The pigments in the ‘slip’ and ‘eye’ regions consist mainly of malvidin 3,5-diglucoside in gra6, suggesting that the difference between the colour of the ‘slip’ and ‘eye’ regions is related to the amount of anthocyanin present. White-flowered C. graecum gra50 possessed lower amounts of anthocyanins, but higher amounts of flavonols compared to gra6, suggesting a change in metabolism caused by a disruption of anthocyanin biosynthesis. Gene expression analysis demonstrated that expression of the dihydroflavonol 4-reductase gene 2 (CgraDFR2) was lower in gra50 compared with gra6, whereas expression of the three other key genes (dihydroflavonol 4-reductase gene 1, flavonoid 3’,5’-hydroxylase, and anthocyanidin synthase) did not differ greatly. These results suggest that the white-flowered variant (gra50) may result from a defect in expression of the CgraDFR2 gene.


Breeding Science | 2018

Breeding of fragrant cyclamen by interspecific hybridization and ion-beam irradiation

Hiroshi Ishizaka

Conventional breeding of cyclamen has relied on crossings among Cyclamen persicum cultivars without consideration of the scent of the flowers. Cyclamen purpurascens is a wild species with the most fragrant flowers in the genus Cyclamen. Allodiploid (2n = 2x = 41, AB) and allotriploid (2n = 3x = 65, AAB) plants have been produced from crosses of diploid and autotetraploid cultivars of C. persicum (2n = 2x = 48, AA; 4x = 96, AAAA) × diploid wild C. purpurascens (2n = 2x = 34, BB) by embryo rescue, but are sterile. Fertile allotetraploid (2n = 4x = 82, AABB) plants have been produced by chromosome doubling of the sterile allodiploids in vitro. Autotetraploid C. purpurascens (2n = 4x = 68, BBBB) has been produced by chromosome doubling of diploid C. purpurascens, and other fertile allotetraploids (2n = 4x = 82, AABB) have been produced from crosses of autotetraploid cultivars of C. persicum × autotetraploid C. purpurascens by embryo rescue. Commercial cultivars of fragrant cyclamen have been bred by conventional crosses among the allotetraploids. Mutation breeding using ion-beam irradiation combined with plant tissue culture has resulted in fragrant cyclamens with novel flower colors and pigments. In contrast, allotriploids (AAB) have not been commercialized because of seed sterility and poor ornamental value. The flower colors are determined by anthocyanins and flavonol glycosides or chalcone glucoside, and the fragrances are determined by monoterpenes, sesquiterpenes, phenylpropanoids, or aliphatics. Techniques for the production of fragrant cyclamen and knowledge of flower pigments and volatiles will allow innovation in conventional cyclamen breeding.


Journal of Plant Biochemistry and Biotechnology | 2017

Identification of functional flavonol synthase genes from fragrant wild cyclamen (Cyclamen purpurascens)

Yusuke Akita; Satoshi Kitamura; Riho Mikami; Hiroshi Ishizaka

Cyclamen purpurascens is considered suitable for horticultural breeding of cyclamens because it has an attractive fragrance that is not found in other wild species. To improve the commercial value of cyclamen flowers, this fragrance has been introduced into ornamental cultivars. However, variation in flower color is somewhat limited in these cultivars, and therefore understanding the genetic networks of flower coloration in C. purpurascens is required. We previously isolated DNA fragments of anthocyanin biosynthetic genes from C. purpurascens, broadening our understanding of the biosynthetic pathway of flavonols, which are co-pigments in flower coloration. In this study, we isolated complete open reading frames of flavonol synthase genes from C. purpurascens (CpurFLS1 and CpurFLS2) and analyzed the in planta functions of the genes by molecular complementation assay using the fls mutant of Arabidopsis thaliana. Expression patterns in several organs of C. purpurascens were also determined. The results strongly suggest that the CpurFLS genes participate in flavonol synthesis. We discuss the involvement of these two FLSs in flower coloration in C. purpurascens.


Bulletin of the Saitama Prefectural Agriculture and Forestry Research Center (Japan) | 2001

Production of interspecific hybrids between Alstroemeria pelegrina L. var. rosea and A. magenta Bayer by ovule culture

Takayuki Ishikawa; Tomoko Takayama; Hiroshi Ishizaka; Keiko Ishikawa; Masahiro Mii

Interspecific hybrids were efficiently produced in the cross-incompatible combination between Alstroemeria pelegrina L. var. rosea and A. magenta Bayer by culturing immature ovules with placenta 7–14 days after pollination on 2 g/l Gelrite-solidified MS medium containing 3% (w/v)sucrose. The plants showed intermediate characteristics between the parents and their hybridity was confirmed by karyotype and DNA analyses. The mean number of chromosome association per PMC at metaphase I was 2.60I+6.70II, pollen stainability was20.8%, and they produced viable seeds after self-pollination. Furthermore, mature plants were obtained when the hybrids were backcrossed as male parents with both the parents. The backcross-progeny from A. pelegrina var. rosea × hybrids exhibited 3.8 to 79.7% pollen stainability and that from A. magenta × hybrids 78.8 to 98.3%. Almost all of these plants produced viable seeds after self-pollination, which implies that they can beutilized for breeding of novel cultivars of Alstroemeria.


Breeding Science | 1992

Production of interspecific hybrids of Cyclamen persicum Mill. and C. hederifolium Aiton. by ovule culture

Hiroshi Ishizaka; Junjiro Uematsu


Journal of Plant Physiology | 2012

Molecular characterization of an anthocyanin-related glutathione S-transferase gene in cyclamen.

Satoshi Kitamura; Yusuke Akita; Hiroshi Ishizaka; Issay Narumi; Atsushi Tanaka


Breeding Science | 1994

Amphidiploids between Cyclamen persicum Mill. and C. hederifolium Aiton Induced through Colchicine Taeatment of Ovules in vitro and Plants

Hiroshi Ishizaka; Junjiro Uematsu

Collaboration


Dive into the Hiroshi Ishizaka's collaboration.

Top Co-Authors

Avatar

Yusuke Akita

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Atsushi Tanaka

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Satoshi Kitamura

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masayoshi Nakayama

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshihiro Hase

Japan Atomic Energy Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge