Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroshi Kawaide is active.

Publication


Featured researches published by Hiroshi Kawaide.


The Plant Cell | 2000

Regulation of Abscisic Acid Signaling by the Ethylene Response Pathway in Arabidopsis

Majid Ghassemian; Eiji Nambara; Sean Cutler; Hiroshi Kawaide; Yuji Kamiya; Peter McCourt

Although abscisic acid (ABA) is involved in a variety of plant growth and developmental processes, few genes that actually regulate the transduction of the ABA signal into a cellular response have been identified. In an attempt to determine negative regulators of ABA signaling, we identified mutants, designated enhanced response to ABA3 (era3), that increased the sensitivity of the seed to ABA. Biochemical and molecular analyses demonstrated that era3 mutants overaccumulate ABA, suggesting that era3 is a negative regulator of ABA synthesis. Subsequent genetic analysis of era3 alleles, however, showed that these are new alleles at the ETHYLENE INSENSITIVE2 locus. Other mutants defective in their response to ethylene also showed altered ABA sensitivity; from these results, we conclude that ethylene appears to be a negative regulator of ABA action during germination. In contrast, the ethylene response pathway positively regulates some aspects of ABA action that involve root growth in the absence of ethylene. We discuss the response of plants to ethylene and ABA in the context of how these two hormones could influence the same growth responses.


The Plant Cell | 2001

Repressing a Repressor: Gibberellin-Induced Rapid Reduction of the RGA Protein in Arabidopsis

Aron L. Silverstone; Hou-Sung Jung; Alyssa Dill; Hiroshi Kawaide; Yuji Kamiya; Tai-ping Sun

RGA (for repressor of ga1-3) and SPINDLY (SPY) are likely repressors of gibberellin (GA) signaling in Arabidopsis because the recessive rga and spy mutations partially suppressed the phenotype of the GA-deficient mutant ga1-3. We found that neither rga nor spy altered the GA levels in the wild-type or the ga1-3 background. However, expression of the GA biosynthetic gene GA4 was reduced 26% by the rga mutation, suggesting that partial derepression of the GA response pathway by rga resulted in the feedback inhibition of GA4 expression. The green fluorescent protein (GFP)–RGA fusion protein was localized to nuclei in transgenic Arabidopsis. This result supports the predicted function of RGA as a transcriptional regulator based on sequence analysis. Confocal microscopy and immunoblot analyses demonstrated that the levels of both the GFP-RGA fusion protein and endogenous RGA were reduced rapidly by GA treatment. Therefore, the GA signal appears to derepress the GA signaling pathway by degrading the repressor protein RGA. The effect of rga on GA4 gene expression and the effect of GA on RGA protein level allow us to identify part of the mechanism by which GA homeostasis is achieved.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The main auxin biosynthesis pathway in Arabidopsis

Kiyoshi Mashiguchi; Keita Tanaka; Tatsuya Sakai; Satoko Sugawara; Hiroshi Kawaide; Masahiro Natsume; Atsushi Hanada; Takashi Yaeno; Ken Shirasu; Hong Yao; Paula McSteen; Yunde Zhao; Ken-ichiro Hayashi; Yuji Kamiya; Hiroyuki Kasahara

The phytohormone auxin plays critical roles in the regulation of plant growth and development. Indole-3-acetic acid (IAA) has been recognized as the major auxin for more than 70 y. Although several pathways have been proposed, how auxin is synthesized in plants is still unclear. Previous genetic and enzymatic studies demonstrated that both TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) flavin monooxygenase-like proteins are required for biosynthesis of IAA during plant development, but these enzymes were placed in two independent pathways. In this article, we demonstrate that the TAA family produces indole-3-pyruvic acid (IPA) and the YUC family functions in the conversion of IPA to IAA in Arabidopsis (Arabidopsis thaliana) by a quantification method of IPA using liquid chromatography–electrospray ionization–tandem MS. We further show that YUC protein expressed in Escherichia coli directly converts IPA to IAA. Indole-3-acetaldehyde is probably not a precursor of IAA in the IPA pathway. Our results indicate that YUC proteins catalyze a rate-limiting step of the IPA pathway, which is the main IAA biosynthesis pathway in Arabidopsis.


FEBS Letters | 2006

Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens

Ken-ichiro Hayashi; Hiroshi Kawaide; Miho Notomi; Yuka Sakigi; Akihiko Matsuo; Hiroshi Nozaki

ent‐Kaurene is the key intermediate in biosynthesis of gibberellins (GAs), plant hormones. In higher plants, ent‐kaurene is synthesized successively by copalyl diphosphate synthase (CPS) and ent‐kaurene synthase (KS) from geranylgeranyl diphosphate (GGDP). On the other hand, fungal ent‐kaurene synthases are bifunctional cyclases with both CPS and KS activity in a single polypeptide. The moss Physcomitrella patens is a model organism for the study of genetics and development in an early land plant. We identified ent‐kaurene synthase (PpCPS/KS) from P. patens and analyzed its function. PpCPS/KS cDNA encodes a 101‐kDa polypeptide, and shows high similarity with CPSs and abietadiene synthase from higher plants. PpCPS/KS is a bifunctional cyclase and, like fungal CPS/KS, directly synthesizes the ent‐kaurene skeleton from GGDP. PpCPS/KS has two aspartate‐rich DVDD and DDYFD motifs observed in CPS and KS, respectively. The mutational analysis of two conserved motifs in PpCPS/KS indicated that the DVDD motif is responsible for CPS activity (GGDP to CDP) and the DDYFD motif for KS activity (CDP to ent‐kaurene and ent‐16α‐hydroxykaurene).


Plant Journal | 1999

Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato

M. Rebers; Tsuyoshi Kaneta; Hiroshi Kawaide; Shinjiro Yamaguchi; Young-Yell Yang; Ryozo Imai; Hiroyuki Sekimoto; Yuji Kamiya

Gibberellins (GAs) are essential for the development of fertile flowers in tomato, and may also be required immediately after fertilization. In the GA-biosynthetic pathway, the reactions catalyzed by GA 20-oxidases have been implicated as site of regulation. To study the regulation of GA biosynthesis in flower and early fruit development, we isolated three tomato GA 20-oxidase cDNA clones, Le20ox-1, -2 and -3. The three genes showed different organ-specific patterns of mRNA accumulation. Analysis of the transcript levels of the three GA 20-oxidase genes, as well as those of copalyl diphosphate synthase (LeCPS) and GA 3 beta-hydroxylase (Le3OH-2) during flower bud and early fruit development, revealed temporally distinct patterns of mRNA accumulation. Up until anthesis, transcripts were observed for LeCPS, Le20ox-1, -2 and Le3OH-2, with an accumulation of Le20ox-1 mRNA. In contrast to the high level of Le3OH-2 transcripts in the fully open flower, mRNA levels of Le20ox-1, -2 and LeCPS were reduced at this stage. After anthesis, LeCPS and Le20ox-1 transcripts increased again. In addition, Le20ox-3transcripts increased whereas the transcripts of Le3OH-2 decreased to an undetectable level. In situ hybridization results demonstrated that during early stages of bud development, Le20ox-2 transcripts were localized in the tapetum and placenta. The presented results supply novel data about localization of GA biosynthesis gene transcripts, and indicate that transcript levels of GA biosynthesis genes are all highly regulated during flower bud development.


Bioscience, Biotechnology, and Biochemistry | 2006

Biochemical and Molecular Analyses of Gibberellin Biosynthesis in Fungi

Hiroshi Kawaide

The plant hormone, gibberellin (GA), regulates plant growth and development. It was first isolated as a superelongation-promoting diterpenoid from the fungus, Gibberella fujikuroi. G. fujikuroi uses different GA biosynthetic intermediates from those in plants to produce GA3. Another class of GA-producing fungus, Phaeosphaeria sp. L487, synthesizes GA1 by using the same intermediates as those in plants. A molecular analysis of GA biosynthesis in Phaeosphaeria sp. has revealed that diterpene cyclase and cytochrome P450 monooxygenases were involved in the plant-like biosynthesis of GA1. Fungal ent-kaurene synthase is a bifunctional cyclase. Subsequent oxidation steps are catalyzed by P450s, leading to biologically active GA1. GA biosynthesis in plants is divided into three steps involving soluble enzymes and membrane-bound cytochrome P450. The activation of plant GAs is catalyzed by soluble 2-oxoglutarate-dependent dioxygenases, which is in contrast to the catalysis of fungal GA biosynthesis. This difference suggests that the origin of fungal GA biosynthesis is evolutionally independent of that in plants.


Plant Physiology | 2003

Overexpression of AtCPS and AtKS in Arabidopsis Confers Increased ent-Kaurene Production But No Increase in Bioactive Gibberellins

Christine M. Fleet; Shinjiro Yamaguchi; Atsushi Hanada; Hiroshi Kawaide; Charles J. David; Yuji Kamiya; Tai-ping Sun

The plant growth hormone gibberellin (GA) is important for many aspects of plant growth and development. Although most genes encoding enzymes at each step of the GA biosynthetic pathway have been cloned, their regulation is less well understood. To assess how up-regulation of early steps affects the biosynthetic pathway overall, we have examined transgenic Arabidopsis plants that overexpress either AtCPS or AtKS or both. These genes encode the enzymes ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase, which catalyze the first two committed steps in GA biosynthesis. We find that both CPS and CPS/ent-kaurene synthase overexpressors have greatly increased levels of the early intermediates ent-kaurene and ent-kaurenoic acid, but a lesser increase of later metabolites. These overexpression lines do not exhibit any GA overdose morphology and have wild-type levels of bioactive GAs. Our data show that CPS is limiting for ent-kaurene production and suggest that conversion of ent-kaurenoic acid to GA12 by ent-kaurenoic acid oxidase may be an important rate-limiting step for production of bioactive GA. These results demonstrate the ability of plants to maintain GA homeostasis despite large changes in accumulation of early intermediates in the biosynthetic pathway.


Plant and Cell Physiology | 2011

Arabidopsis CYP94B3 encodes jasmonyl-l-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate

Naoki Kitaoka; Takuya Matsubara; Michio Sato; Kosaku Takahashi; Shinji Wakuta; Hiroshi Kawaide; Hirokazu Matsui; Kensuke Nabeta; Hideyuki Matsuura

The hormonal action of jasmonate in plants is controlled by the precise balance between its biosynthesis and catabolism. It has been shown that jasmonyl-L-isoleucine (JA-Ile) is the bioactive form involved in the jasmonate-mediated signaling pathway. However, the catabolism of JA-Ile is poorly understood. Although a metabolite, 12-hydroxyJA-Ile, has been characterized, detailed functional studies of the compound and the enzyme that produces it have not been conducted. In this report, the kinetics of wound-induced accumulation of 12-hydroxyJA-Ile in plants were examined, and its involvement in the plant wound response is described. Candidate genes for the catabolic enzyme were narrowed down from 272 Arabidopsis Cyt P450 genes using Arabidopsis mutants. The candidate gene was functionally expressed in Pichia pastoris to reveal that CYP94B3 encodes JA-Ile 12-hydroxylase. Expression analyses demonstrate that expression of CYP94B3 is induced by wounding and shows specific activity toward JA-Ile. Plants grown in medium containing JA-Ile show higher sensitivity to JA-Ile in cyp94b3 mutants than in wild-type plants. These results demonstrate that CYP94B3 plays a major regulatory role in controlling the level of JA-Ile in plants.


Proceedings of the National Academy of Sciences of the United States of America | 2013

CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice

Hiroshi Magome; Takahito Nomura; Atsushi Hanada; Noriko Takeda-Kamiya; Toshiyuki Ohnishi; Yuko Shinma; Takumi Katsumata; Hiroshi Kawaide; Yuji Kamiya; Shinjiro Yamaguchi

Bioactive gibberellins (GAs) control many aspects of growth and development in plants. GA1 has been the most frequently found bioactive GA in various tissues of flowering plants, but the enzymes responsible for GA1 biosynthesis have not been fully elucidated due to the enzymes catalyzing the 13-hydroxylation step not being identified. Because of the lack of mutants defective in this enzyme, biological significance of GA 13-hydroxylation has been unknown. Here, we report that two cytochrome P450 genes, CYP714B1 and CYP714B2, encode GA 13-oxidase in rice. Transgenic Arabidopsis plants that overexpress CYP714B1 or CYP714B2 show semidwarfism. There was a trend that the levels of 13-OH GAs including GA1 were increased in these transgenic plants. Functional analysis using yeast or insect cells shows that recombinant CYP714B1 and CYP714B2 proteins can convert GA12 into GA53 (13-OH GA12) in vitro. Moreover, the levels of 13-OH GAs including GA1 were decreased, whereas those of 13-H GAs including GA4 (which is more active than GA1) were increased, in the rice cyp714b1 cyp714b2 double mutant. These results indicate that CYP714B1 and CYP714B2 play a predominant role in GA 13-hydroxylation in rice. The double mutant plants appear phenotypically normal until heading, but show elongated uppermost internode at the heading stage. Moreover, CYP714B1 and CYP714B2 expression was up-regulated by exogenous application of bioactive GAs. Our results suggest that GA 13-oxidases play a role in fine-tuning plant growth by decreasing GA bioactivity in rice and that they also participate in GA homeostasis.


Plant and Cell Physiology | 2008

Genetic Evidence for the Role of Isopentenyl Diphosphate Isomerases in the Mevalonate Pathway and Plant Development in Arabidopsis

Kazunori Okada; Hiroyuki Kasahara; Shinjiro Yamaguchi; Hiroshi Kawaide; Yuji Kamiya; Hideaki Nojiri; Hisakazu Yamane

Isopentenyl/dimethylallyl diphosphate isomerase (IPI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are the universal C(5) units of isoprenoids. In plants, IPP and DMAPP are synthesized via the cytosolic mevalonate (MVA) and plastidic methylerythritol phosphate (MEP) pathways, respectively. However, the role of IPI in each pathway and in plant development is unknown due to a lack of genetic studies using IPI-defective mutants. Here, we show that the atipi1atipi2 double mutant, which is defective in two Arabidopsis IPI isozymes, exhibits dwarfism and male sterility under long-day conditions and decreased pigmentation under continuous light, whereas the atipi1 and atipi2 single mutants are phenotypically normal. We also show that the sterol and ubiquinone levels in the double mutant are <50% of those in wild-type plants, and that the male-sterile phenotype is chemically complemented by squalene, a sterol precursor. In vivo isotope labeling experiments using the atipi1atipi2 double mutant revealed a decrease in the incorporation of MVA (in its lactone form) into sterols, with no decrease in the incorporation of MEP pathway intermediates into tocopherol. These results demonstrate a critical role for IPI in isoprenoid biosynthesis via the MVA pathway, and they imply that IPI is essential for the maintenance of appropriate levels of IPP and DMAPP in different subcellular compartments in plants.

Collaboration


Dive into the Hiroshi Kawaide's collaboration.

Top Co-Authors

Avatar

Masahiro Natsume

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken-ichiro Hayashi

Okayama University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Abe

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Sho Miyazaki

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Nozaki

Okayama University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge