Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroshi Kiyonari is active.

Publication


Featured researches published by Hiroshi Kiyonari.


Developmental Cell | 2009

The Hippo Signaling Pathway Components Lats and Yap Pattern Tead4 Activity to Distinguish Mouse Trophectoderm from Inner Cell Mass

Noriyuki Nishioka; Ken ichi Inoue; Kenjiro Adachi; Hiroshi Kiyonari; Mitsunori Ota; Amy Ralston; Norikazu Yabuta; Shino Hirahara; Robert O. Stephenson; Narumi Ogonuki; Ryosuke Makita; Hiroki Kurihara; Elizabeth M. Morin-Kensicki; Hiroshi Nojima; Janet Rossant; Kazuki Nakao; Hitoshi Niwa; Hiroshi Sasaki

Outside cells of the preimplantation mouse embryo form the trophectoderm (TE), a process requiring the transcription factor Tead4. Here, we show that transcriptionally active Tead4 can induce Cdx2 and other trophoblast genes in parallel in embryonic stem cells. In embryos, the Tead4 coactivator protein Yap localizes to nuclei of outside cells, and modulation of Tead4 or Yap activity leads to changes in Cdx2 expression. In inside cells, Yap is phosphorylated and cytoplasmic, and this involves the Hippo signaling pathway component Lats. We propose that active Tead4 promotes TE development in outside cells, whereas Tead4 activity is suppressed in inside cells by cell contact- and Lats-mediated inhibition of nuclear Yap localization. Thus, differential signaling between inside and outside cell populations leads to changes in cell fate specification during TE formation.


Proceedings of the National Academy of Sciences of the United States of America | 2010

IL-33 is a crucial amplifier of innate rather than acquired immunity

Keisuke Oboki; Tatsukuni Ohno; Naoki Kajiwara; Ken Arae; Hideaki Morita; Akina Ishii; Aya Nambu; Takaya Abe; Hiroshi Kiyonari; Kenji Matsumoto; Katsuko Sudo; Ko Okumura; Hirohisa Saito; Susumu Nakae

IL-33, a member of the IL-1-related cytokines, is considered to be a proallergic cytokine that is especially involved in Th2-type immune responses. Moreover, like IL-1α, IL-33 has been suggested to act as an “alarmin” that amplifies immune responses during tissue injury. In contrast to IL-1, however, the precise roles of IL-33 in those settings are poorly understood. Using IL-1- and IL-33-deficient mice, we found that IL-1, but not IL-33, played a substantial role in induction of T cell-mediated type IV hypersensitivity such as contact and delayed-type hypersensitivity and autoimmune diseases such as experimental autoimmune encephalomyelitis. Most notably, however, IL-33 was important for innate-type mucosal immunity in the lungs and gut. That is, IL-33 was essential for manifestation of T cell-independent protease allergen-induced airway inflammation as well as OVA-induced allergic topical airway inflammation, without affecting acquisition of antigen-specific memory T cells. IL-33 was significantly involved in the development of dextran-induced colitis accompanied by T cell-independent epithelial cell damage, but not in streptozocin-induced diabetes or Con A-induced hepatitis characterized by T cell-mediated apoptotic tissue destruction. In addition, IL-33-deficient mice showed a substantially diminished LPS-induced systemic inflammatory response. These observations indicate that IL-33 is a crucial amplifier of mucosal and systemic innate, rather than acquired, immune responses.


Nature Cell Biology | 2008

Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis.

Daijiro Konno; Go Shioi; Atsunori Shitamukai; Asako Mori; Hiroshi Kiyonari; Takaki Miyata; Fumio Matsuzaki

During mammalian development, neuroepithelial cells function as mitotic progenitors, which self-renew and generate neurons. Although spindle orientation is important for such polarized cells to undergo symmetric or asymmetric divisions, its role in mammalian neurogenesis remains unclear. Here we show that control of spindle orientation is essential in maintaining the population of neuroepithelial cells, but dispensable for the decision to either proliferate or differentiate. Knocking out LGN, (the G protein regulator), randomized the orientation of normally planar neuroepithelial divisions. The resultant loss of the apical membrane from daughter cells frequently converted them into abnormally localized progenitors without affecting neuronal production rate. Furthermore, overexpression of Inscuteable to induce vertical neuroepithelial divisions shifted the fate of daughter cells. Our results suggest that planar mitosis ensures the self-renewal of neuroepithelial progenitors by one daughter inheriting both apical and basal compartments during neurogenesis.


Cell | 2014

Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis

Etsuo A. Susaki; Kazuki Tainaka; Dimitri Perrin; Fumiaki Kishino; Takehiro Tawara; Tomonobu M. Watanabe; Chihiro Yokoyama; Hirotaka Onoe; Megumi Eguchi; Shun Yamaguchi; Takaya Abe; Hiroshi Kiyonari; Yoshihiro Shimizu; Atsushi Miyawaki; Hideo Yokota; Hiroki R. Ueda

Systems-level identification and analysis of cellular circuits in the brain will require the development of whole-brain imaging with single-cell resolution. To this end, we performed comprehensive chemical screening to develop a whole-brain clearing and imaging method, termed CUBIC (clear, unobstructed brain imaging cocktails and computational analysis). CUBIC is a simple and efficient method involving the immersion of brain samples in chemical mixtures containing aminoalcohols, which enables rapid whole-brain imaging with single-photon excitation microscopy. CUBIC is applicable to multicolor imaging of fluorescent proteins or immunostained samples in adult brains and is scalable from a primate brain to subcellular structures. We also developed a whole-brain cell-nuclear counterstaining protocol and a computational image analysis pipeline that, together with CUBIC reagents, enable the visualization and quantification of neural activities induced by environmental stimulation. CUBIC enables time-course expression profiling of whole adult brains with single-cell resolution.


Mechanisms of Development | 2008

Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos.

Noriyuki Nishioka; Shinji Yamamoto; Hiroshi Kiyonari; Hiroko Sato; Atsushi Sawada; Mitsunori Ota; Kazuki Nakao; Hiroshi Sasaki

During pre-implantation mouse development, embryos form blastocysts with establishment of the first two cell lineages: the trophectoderm (TE) which gives rise to the placenta, and the inner cell mass (ICM) which will form the embryo proper. Differentiation of TE is regulated by the transcription factor Caudal-related homeobox 2 (Cdx2), but the mechanisms which act upstream of Cdx2 expression remain unknown. Here we show that the TEA domain family transcription factor, Tead4, is required for TE development. Tead1, Tead2 and Tead4 were expressed in pre-implantation embryos, and at least Tead1 and Tead4 were expressed widely in both TE and ICM lineages. Tead4-/- embryos died at pre-implantation stages without forming the blastocoel. The mutant embryos continued cell proliferation, and adherens junction and cell polarity were not significantly affected. In Tead4-/- embryos, Cdx2 was weakly expressed at the morula stage but was not expressed in later stages. None of the TE specific genes, including Eomes and a Cdx2 independent gene, Fgfr2, was detected in Tead4-/- embryos. Instead, the ICM specific transcription factors, Oct3/4 and Nanog, were expressed in all the blastomeres. Tead4-/- embryos also failed to differentiate trophoblast giant cells when they were cultured in vitro. ES cells with normal in vitro differentiation abilities were established from Tead4-/- embryos. These results suggest that Tead4 has a distinct role from Tead1 and Tead2 in trophectoderm specification of pre-implantation embryos, and that Tead4 is an early transcription factor required for specification and development of the trophectoderm lineage, which includes expression of Cdx2.


The Journal of Neuroscience | 2011

MicroRNA-9 Regulates Neurogenesis in Mouse Telencephalon by Targeting Multiple Transcription Factors

Mikihito Shibata; Hiromi Nakao; Hiroshi Kiyonari; Takaya Abe; Shin-Ichi Aizawa

microRNA-9-2 and microRNA-9-3 double-mutant mice demonstrate that microRNA-9 (miR-9) controls neural progenitor proliferation and differentiation in the developing telencephalon by regulating the expression of multiple transcription factors. As suggested by our previous study, the Foxg1 expression was elevated, and the production of Cajal-Retzius cells and early-born neurons was suppressed in the miR-9-2/3 double-mutant pallium. At embryonic day 16.5 (E16.5), however, the Foxg1 expression was no longer elevated. The expression of an AU-rich RNA-binding protein Elavl2 increased at E16.5, Elav2 associated with Foxg1 3′ untranslated region (UTR), and it countered the Foxg1 suppression by miR-9. Later, progenitor proliferation was reduced in the miR-9-2/3 double-mutant pallium with the decrease in Nr2e1 and Pax6 expression and the increase in Meis2 expression. The analyses suggest that microRNA-9 indirectly inhibits Pax6 expression by suppressing Meis2 expression. In contrast, together with Elavl1 and Msi1, microRNA-9 targets Nr2e1 mRNA 3′ UTR to enhance the expression. Concomitantly, cortical layers were reduced, each cortical projection was malformed, and the tangential migration of interneurons into the pallium was impaired in the miR-9-2/3 double mutants. miR-9 also targets Gsh2 3′ UTR, and Gsh2, as well as Foxg1, expression was elevated in the miR-9-2/3 double-mutant subpallium. The subpallium progenitor proliferation was enhanced, and the development of basal ganglia including striatum and globus pallidus was suppressed. Pallial/subpallial boundary shifted dorsally, and the ventral pallium was lost. Corridor was malformed, and thalamocortical and corticofugal axons were misrouted in the miR-9-2/3 double mutants.


Journal of Clinical Investigation | 2012

The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice

Shigetomo Fukuhara; Szandor Simmons; Shunsuke Kawamura; Asuka Inoue; Yasuko Orba; Takeshi Tokudome; Yuji Sunden; Yuji Arai; Kazumasa Moriwaki; Junji Ishida; Akiyoshi Uemura; Hiroshi Kiyonari; Takaya Abe; Akiyoshi Fukamizu; Masanori Hirashima; Hirofumi Sawa; Junken Aoki; Masaru Ishii; Naoki Mochizuki

The bioactive lysophospholipid mediator sphingosine-1-phosphate (S1P) promotes the egress of newly formed T cells from the thymus and the release of immature B cells from the bone marrow. It has remained unclear, however, where and how S1P is released. Here, we show that in mice, the S1P transporter spinster homolog 2 (Spns2) is responsible for the egress of mature T cells and immature B cells from the thymus and bone marrow, respectively. Global Spns2-KO mice exhibited marked accumulation of mature T cells in thymi and decreased numbers of peripheral T cells in blood and secondary lymphoid organs. Mature recirculating B cells were reduced in frequency in the bone marrow as well as in blood and secondary lymphoid organs. Bone marrow reconstitution studies revealed that Spns2 was not involved in S1P release from blood cells and suggested a role for Spns2 in other cells. Consistent with these data, endothelia-specific deletion of Spns2 resulted in defects of lymphocyte egress similar to those observed in the global Spns2-KO mice. These data suggest that Spns2 functions in ECs to establish the S1P gradient required for T and B cells to egress from their respective primary lymphoid organs. Furthermore, Spns2 could be a therapeutic target for a broad array of inflammatory and autoimmune diseases.


Nature | 2011

Intrinsic transition of embryonic stem-cell differentiation into neural progenitors

Daisuke Kamiya; Satoe Banno; Noriaki Sasai; Masatoshi Ohgushi; Hidehiko Inomata; Kiichi Watanabe; Masako Kawada; Rieko Yakura; Hiroshi Kiyonari; Kazuki Nakao; Lars Martin Jakt; Shin-Ichi Nishikawa; Yoshiki Sasai

The neural fate is generally considered to be the intrinsic direction of embryonic stem (ES) cell differentiation. However, little is known about the intracellular mechanism that leads undifferentiated cells to adopt the neural fate in the absence of extrinsic inductive signals. Here we show that the zinc-finger nuclear protein Zfp521 is essential and sufficient for driving the intrinsic neural differentiation of mouse ES cells. In the absence of the neural differentiation inhibitor BMP4, strong Zfp521 expression is intrinsically induced in differentiating ES cells. Forced expression of Zfp521 enables the neural conversion of ES cells even in the presence of BMP4. Conversely, in differentiation culture, Zfp521-depleted ES cells do not undergo neural conversion but tend to halt at the epiblast state. Zfp521 directly activates early neural genes by working with the co-activator p300. Thus, the transition of ES cell differentiation from the epiblast state into neuroectodermal progenitors specifically depends on the cell-intrinsic expression and activator function of Zfp521.


Journal of Clinical Investigation | 2013

The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance.

Motoyuki Tamaki; Yoshio Fujitani; Akemi Hara; Toyoyoshi Uchida; Yoshifumi Tamura; Kageumi Takeno; Minako Kawaguchi; Takahiro Watanabe; Takeshi Ogihara; Ayako Fukunaka; Tomoaki Shimizu; Tomoya Mita; Akio Kanazawa; Mica Ohara Imaizumi; Takaya Abe; Hiroshi Kiyonari; Shintaro Hojyo; Toshiyuki Fukada; Takeshi Kawauchi; Shinya Nagamatsu; Toshio Hirano; Ryuzo Kawamori; Hirotaka Watada

Recent genome-wide association studies demonstrated that common variants of solute carrier family 30 member 8 gene (SLC30A8) increase susceptibility to type 2 diabetes. SLC30A8 encodes zinc transporter-8 (ZnT8), which delivers zinc ion from the cytoplasm into insulin granules. Although it is well known that insulin granules contain high amounts of zinc, the physiological role of secreted zinc remains elusive. In this study, we generated mice with β cell-specific Slc30a8 deficiency (ZnT8KO mice) and demonstrated an unexpected functional linkage between Slc30a8 deletion and hepatic insulin clearance. The ZnT8KO mice had low peripheral blood insulin levels, despite insulin hypersecretion from pancreatic β cells. We also demonstrated that a substantial amount of the hypersecreted insulin was degraded during its first passage through the liver. Consistent with these findings, ZnT8KO mice and human individuals carrying rs13266634, a major risk allele of SLC30A8, exhibited increased insulin clearance, as assessed by c-peptide/insulin ratio. Furthermore, we demonstrated that zinc secreted in concert with insulin suppressed hepatic insulin clearance by inhibiting clathrin-dependent insulin endocytosis. Our results indicate that SLC30A8 regulates hepatic insulin clearance and that genetic dysregulation of this system may play a role in the pathogenesis of type 2 diabetes.


Hepatology | 2008

Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver†

Atsushi Suzuki; Sayaka Sekiya; Makiko Onishi; Naoko Oshima; Hiroshi Kiyonari; Hiromitsu Nakauchi; Hideki Taniguchi

The adult liver progenitor cells appear in response to several types of pathological liver injury, especially when hepatocyte replication is blocked. These cells are histologically identified as cells that express cholangiocyte markers and proliferate in the portal area of the hepatic lobule. Although these cells play an important role in liver regeneration, the precise characterization that determines these cells as self‐renewing bipotent primitive hepatic cells remains to be shown. Here we attempted to isolate cells that express a cholangiocyte marker from the adult mouse liver and perform single cell‐based analysis to examine precisely bilineage differentiation potential and self‐renewing capability of these cells. Based on the results of microarray analysis and immunohistochemistry, we used an antibody against CD133 and isolate CD133+ cells via flow cytometry. We then cultured and propagated isolated cells in a single cell culture condition and examined their potential for proliferation and differentiation in vitro and in vivo. Isolated cells that could form large colonies (LCs) in culture gave rise to both hepatocytes and cholangiocytes as descendants, while maintaining undifferentiated cells by self‐renewing cell divisions. The clonogenic progeny of an LC‐forming cell is capable of reconstituting hepatic tissues in vivo by differentiating into fully functional hepatocytes. Moreover, the deletion of p53 in isolated LC‐forming cells resulted in the formation of tumors with some characteristics of hepatocellular carcinoma and cholangiocarcinoma upon subcutaneous injection into immunodeficient mutant mice. These data provide evidence for the stem cell‐like capacity of isolated and clonally cultured CD133+ LC‐forming cells. Conclusion: Our method for prospectively isolating hepatic progenitor cells from the adult mouse liver will facilitate study of their roles in liver regeneration and carcinogenesis. (HEPATOLOGY 2008;48:1964‐1978.)

Collaboration


Dive into the Hiroshi Kiyonari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shin-Ichi Aizawa

Prefectural University of Hiroshima

View shared research outputs
Top Co-Authors

Avatar

Yasuhide Furuta

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yasuhide Furuta

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge