Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroshi Onogi is active.

Publication


Featured researches published by Hiroshi Onogi.


Journal of Biological Chemistry | 1999

The subcellular localization of SF2/ASF is regulated by direct interaction with SR protein kinases (SRPKs).

Jun Koizumi; Yoshichika Okamoto; Hiroshi Onogi; A. Mayeda; Adrian R. Krainer; Masatoshi Hagiwara

Serine/arginine-rich (SR) proteins play an important role in constitutive and alternative pre-mRNA splicing. The C-terminal arginine-serine domain of these proteins, such as SF2/ASF, mediates protein-protein interactions and is phosphorylatedin vivo. Using glutathione S-transferase (GST)-SF2/ASF-affinity chromatography, the SF2/ASF kinase activity was co-purified from HeLa cells with a 95-kDa protein, which was recognized by an anti-SR protein kinase (SRPK) 1 monoclonal antibody. Recombinant SRPK1 and SRPK2 bound to and phosphorylated GST-SF2/ASF in vitro. Phosphopeptide mapping showed that identical sites were phosphorylated in the pull-down kinase reaction with HeLa extracts and by recombinant SRPKs. Epitope-tagged SF2/ASF transiently expressed in COS7 cells co-immunoprecipitated with SRPKs. Deletion analysis mapped the phosphorylation sites to a region containing an (Arg-Ser)8 repeat beginning at residue 204, and far-Western analysis showed that the region is required for binding of SRPKs to SF2/ASF. Further binding studies showed that SRPKs bound unphosphorylated SF2/ASF but did not bind phosphorylated SF2/ASF. Expression of an SRPK2 kinase-inactive mutant caused accumulation of SF2/ASF in the cytoplasm. These results suggest that the formation of complexes between SF2/ASF and SRPKs, which is influenced by the phosphorylation state of SF2/ASF, may have regulatory roles in the assembly and localization of this splicing factor.


Nature Communications | 2010

Development of a novel selective inhibitor of the Down syndrome-related kinase Dyrk1A

Yasushi Ogawa; Yosuke Nonaka; Toshiyasu Goto; Eriko Ohnishi; Toshiyuki Hiramatsu; Isao Kii; Miyo Yoshida; Teikichi Ikura; Hiroshi Onogi; Hiroshi Shibuya; Takamitsu Hosoya; Nobutoshi Ito; Masatoshi Hagiwara

Dyrk1A (dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A) is a serine/threonine kinase essential for brain development and function, and its excessive activity is considered a pathogenic factor in Down syndrome. The development of potent, selective inhibitors of Dyrk1A would help to elucidate the molecular mechanisms of normal and diseased brains, and may provide a new lead compound for molecular-targeted drug discovery. Here, we report a novel Dyrk1A inhibitor, INDY, a benzothiazole derivative showing a potent ATP-competitive inhibitory effect with IC(50) and K(i) values of 0.24 and 0.18 μM, respectively. X-ray crystallography of the Dyrk1A/INDY complex revealed the binding of INDY in the ATP pocket of the enzyme. INDY effectively reversed the aberrant tau-phosphorylation and rescued the repressed NFAT (nuclear factor of activated T cell) signalling induced by Dyrk1A overexpression. Importantly, proINDY, a prodrug of INDY, effectively recovered Xenopus embryos from head malformation induced by Dyrk1A overexpression, resulting in normally developed embryos and demonstrating the utility of proINDY in vivo.


Journal of Biological Chemistry | 1998

Dymple, a Novel Dynamin-like High Molecular Weight GTPase Lacking a Proline-rich Carboxyl-terminal Domain in Mammalian Cells

Takahiro Kamimoto; Yasuo Nagai; Hiroshi Onogi; Yoshinao Muro; Takashi Wakabayashi; Masatoshi Hagiwara

We have cloned human dymple, a novel dynamin family member. The full-length cDNA sequence encodes a protein composed of 736 amino acids with a molecular mass of 80 kDa. This amino acid sequence most resembles yeast DNM1P and VPS1P. Dymple lacks a proline-rich carboxyl-terminal domain through which dynamin binds to SH3 domains to be activated. Northern blot analysis revealed two transcript sizes of 2.5 and 4.2 kilobases with alternative polyadenylation at the highest levels in brain, skeletal muscle, and testis. It was further established that there are three patterns of alternative splicing producing in-frame deletions in the coding sequence of dymple in a tissue-specific manner. When overexpressed, wild-type dymple exhibited a punctate perinuclear cytoplasmic pattern, whereas an amino-terminal deletion mutant formed large aggregates bounded by a trans-Golgi network marker. Since dynamin participates in clathrin-mediated endocytosis through a well-characterized mechanism, the existence of a dynamin-like molecule in each specific vesicle transport pathway has been predicted. Our findings suggest that dymple may be the first example of such a subfamily in mammalian cells other than dynamin itself, although its precise role and membrane localization remain to be resolved.


Journal of Biological Chemistry | 2004

Regulation of binding of lamin B receptor to chromatin by SR protein kinase and cdc2 kinase in Xenopus egg extracts.

Makoto Takano; Yuhei Koyama; Hiromi Ito; Satomi Hoshino; Hiroshi Onogi; Masatoshi Hagiwara; Kazuhiro Furukawa; Tsuneyoshi Horigome

Participation of multiple kinases in regulation of the binding of lamin B receptor (LBR) to chromatin was suggested previously (Takano, M., Takeuchi, M., Ito, H., Furukawa, K., Sugimoto, K., Omata, S., and Horigome, T. (2002) Eur. J. Biochem. 269, 943-953). To identify these kinases, regulation of the binding of the nucleoplasmic region (NK, amino acid residues 1-211) of LBR to sperm chromatin was studied using a cell cycle-dependent Xenopus egg extract in vitro. The binding was stimulated on specific phosphorylation of the NK fragment by an S-phase egg extract. Protein depletion with beads bearing SF2/ASF, which binds SR protein kinases, abolished this stimulation, suggesting that an SR protein kinase(s) is responsible for the activation of LBR. This was confirmed by direct phosphorylation and activation with recombinant SR protein-specific kinase 1. The binding of the NK fragment to chromatin pretreated with an S-phase extract was suppressed by incubation with an M-phase extract. Enzyme inhibitor experiments revealed that multiple kinases participate in the suppression. One of these kinases was shown to be cdc2 kinase using a specific inhibitor, roscovitine, and protein depletion with beads bearing p13, which specifically binds cdc2 kinase. Experiments involving a mutant NK fragment showed that the phosphorylation of serine 71 by cdc2 kinase is responsible for the suppression.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia

Mayumi Yoshida; Naoyuki Kataoka; Kenjyo Miyauchi; Kenji Ohe; Kei Iida; Suguru Yoshida; Takayuki Nojima; Yukiko Okuno; Hiroshi Onogi; Tomomi Usui; Akihide Takeuchi; Takamitsu Hosoya; Tsutomu Suzuki; Masatoshi Hagiwara

Significance Familial dysautonomia (FD) is caused by missplicing of the IκB kinase complex-associated protein (IKAP) gene, which results in the skipping of exon 20, especially in neurons. FD would be treatable if exon 20 inclusion were increased correctly to reestablish correct splicing. Here, we have established a dual-color splicing reporter that recapitulates FD-type splicing. By using this reporter, we have identified a small chemical compound, named rectifier of aberrant splicing (RECTAS), that rectifies the aberrant splicing of FD. RECTAS promotes both exon 20 inclusion and the product IKAP expression in cells of patients with FD. Furthermore, we have demonstrated that modification levels of wobble uridine residues of several tRNAs are reduced in FD cells and that RECTAS can recover not only tRNA modifications but also cell viability of FD cells. Familial dysautonomia (FD), a hereditary sensory and autonomic neuropathy, is caused by missplicing of exon 20, resulting from an intronic mutation in the inhibitor of kappa light polypeptide gene enhancer in B cells, kinase complex-associated protein (IKBKAP) gene encoding IKK complex-associated protein (IKAP)/elongator protein 1 (ELP1). A newly established splicing reporter assay allowed us to visualize pathogenic splicing in cells and to screen small chemicals for the ability to correct the aberrant splicing of IKBKAP. Using this splicing reporter, we screened our chemical libraries and identified a compound, rectifier of aberrant splicing (RECTAS), that rectifies the aberrant IKBKAP splicing in cells from patients with FD. Here, we found that the levels of modified uridine at the wobble position in cytoplasmic tRNAs are reduced in cells from patients with FD and that treatment with RECTAS increases the expression of IKAP and recovers the tRNA modifications. These findings suggest that the missplicing of IKBKAP results in reduced tRNA modifications in patients with FD and that RECTAS is a promising therapeutic drug candidate for FD.


Journal of Biological Chemistry | 2011

α1,6-Fucosyltransferase-deficient mice exhibit multiple behavioral abnormalities associated with a schizophrenia-like phenotype: importance of the balance between the dopamine and serotonin systems

Tomohiko Fukuda; Hirokazu Hashimoto; Natsumi Okayasu; Akihiko Kameyama; Hiroshi Onogi; Osamu Nakagawasai; Takahiro Nakazawa; Tomoyo Kurosawa; Yan Hao; Tomoya Isaji; Takeshi Tadano; Hisashi Narimatsu; Naoyuki Taniguchi; Jianguo Gu

Previously, we reported that α1,6-fucosyltransferase (Fut8)-deficient (Fut8(-/-)) mice exhibit emphysema-like changes in the lung and severe growth retardation due to dysregulation of TGF-β1 and EGF receptors and to abnormal integrin activation, respectively. To study the role of α1,6-fucosylation in brain tissue where Fut8 is highly expressed, we examined Fut8(-/-) mice using a combination of neurological and behavioral tests. Fut8(-/-) mice exhibited multiple behavioral abnormalities consistent with a schizophrenia-like phenotype. Fut8(-/-) mice displayed increased locomotion compared with wild-type (Fut8(+/+)) and heterozygous (Fut8(+/-)) mice. In particular, Fut8(-/-) mice showed strenuous hopping behavior in a novel environment. Working memory performance was impaired in Fut8(-/-) mice as evidenced by the Y-maze tests. Furthermore, Fut8(-/-) mice showed prepulse inhibition (PPI) deficiency. Intriguingly, although there was no significant difference between Fut8(+/+) and Fut8(+/-) mice in the PPI test under normal conditions, Fut8(+/-) mice showed impaired PPI after exposure to a restraint stress. This result suggests that reduced expression of Fut8 is a plausible cause of schizophrenia and related disorders. The levels of serotonin metabolites were significantly decreased in both the striatum and nucleus accumbens of the Fut8(-/-) mice. Likewise, treatment with haloperidol, which is an antipsychotic drug that antagonizes dopaminergic and serotonergic receptors, significantly reduced hopping behaviors. The present study is the first to clearly demonstrate that α1,6-fucosylation plays an important role in the brain, and that it might be related to schizophrenia-like behaviors. Thus, the results of the present study provide new insights into the underlying mechanisms responsible for schizophrenia and related disorders.Previously, we reported that α1,6-fucosyltransferase (Fut8)-deficient (Fut8−/−) mice exhibit emphysema-like changes in the lung and severe growth retardation due to dysregulation of TGF-β1 and EGF receptors and to abnormal integrin activation, respectively. To study the role of α1,6-fucosylation in brain tissue where Fut8 is highly expressed, we examined Fut8−/− mice using a combination of neurological and behavioral tests. Fut8−/− mice exhibited multiple behavioral abnormalities consistent with a schizophrenia-like phenotype. Fut8−/− mice displayed increased locomotion compared with wild-type (Fut8+/+) and heterozygous (Fut8+/−) mice. In particular, Fut8−/− mice showed strenuous hopping behavior in a novel environment. Working memory performance was impaired in Fut8−/− mice as evidenced by the Y-maze tests. Furthermore, Fut8−/− mice showed prepulse inhibition (PPI) deficiency. Intriguingly, although there was no significant difference between Fut8+/+ and Fut8+/− mice in the PPI test under normal conditions, Fut8+/− mice showed impaired PPI after exposure to a restraint stress. This result suggests that reduced expression of Fut8 is a plausible cause of schizophrenia and related disorders. The levels of serotonin metabolites were significantly decreased in both the striatum and nucleus accumbens of the Fut8−/− mice. Likewise, treatment with haloperidol, which is an antipsychotic drug that antagonizes dopaminergic and serotonergic receptors, significantly reduced hopping behaviors. The present study is the first to clearly demonstrate that α1,6-fucosylation plays an important role in the brain, and that it might be related to schizophrenia-like behaviors. Thus, the results of the present study provide new insights into the underlying mechanisms responsible for schizophrenia and related disorders.


Journal of Clinical Investigation | 2014

CDK9 inhibitor FIT-039 prevents replication of multiple DNA viruses

Makoto Yamamoto; Hiroshi Onogi; Isao Kii; Suguru Yoshida; Kei Iida; Hiroyuki Sakai; Minako Abe; Toshiaki Tsubota; Nobutoshi Ito; Takamitsu Hosoya; Masatoshi Hagiwara

A wide range of antiviral drugs is currently available; however, drug-resistant viruses have begun to emerge and represent a potential public health risk. Here, we explored the use of compounds that inhibit or interfere with the action of essential host factors to prevent virus replication. In particular, we focused on the cyclin-dependent kinase 9 (CDK9) inhibitor, FIT-039, which suppressed replication of a broad spectrum of DNA viruses through inhibition of mRNA transcription. Specifically, FIT-039 inhibited replication of herpes simplex virus 1 (HSV-1), HSV-2, human adenovirus, and human cytomegalovirus in cultured cells, and topical application of FIT-039 ointment suppressed skin legion formation in a murine HSV-1 infection model. FIT-039 did not affect cell cycle progression or cellular proliferation in host cells. Compared with the general CDK inhibitor flavopiridol, transcriptome analyses of FIT-039-treated cells revealed that FIT-039 specifically inhibited CDK9. Given at concentrations above the inhibitory concentration, FIT-039 did not have a cytotoxic effect on mammalian cells. Importantly, administration of FIT-039 ameliorated the severity of skin lesion formation in mice infected with an acyclovir-resistant HSV-1, without noticeable adverse effects. Together, these data indicate that FIT-039 has potential as an antiviral agent for clinical therapeutics.


PLOS ONE | 2011

The kinase inhibitor sfv785 dislocates dengue virus envelope protein from the replication complex and blocks virus assembly

Azlinda Anwar; Takamitsu Hosoya; Kok Mun Leong; Hiroshi Onogi; Yukiko Okuno; Toshiyuki Hiramatsu; Hiroko Koyama; Masaaki Suzuki; Masatoshi Hagiwara; Mariano A. Garcia-Blanco

Dengue virus (DENV) is the etiologic agent for dengue fever, for which there is no approved vaccine or specific anti-viral drug. As a remedy for this, we explored the use of compounds that interfere with the action of required host factors and describe here the characterization of a kinase inhibitor (SFV785), which has selective effects on NTRK1 and MAPKAPK5 kinase activity, and anti-viral activity on Hepatitis C, DENV and yellow fever viruses. SFV785 inhibited DENV propagation without inhibiting DENV RNA synthesis or translation. The compound did not cause any changes in the cellular distribution of non-structural 3, a protein critical for DENV RNA synthesis, but altered the distribution of the structural envelope protein from a reticulate network to enlarged discrete vesicles, which altered the co-localization with the DENV replication complex. Ultrastructural electron microscopy analyses of DENV-infected SFV785-treated cells showed the presence of viral particles that were distinctly different from viable enveloped virions within enlarged ER cisternae. These viral particles were devoid of the dense nucleocapsid. The secretion of the viral particles was not inhibited by SFV785, however a reduction in the amount of secreted infectious virions, DENV RNA and capsid were observed. Collectively, these observations suggest that SFV785 inhibited the recruitment and assembly of the nucleocapsid in specific ER compartments during the DENV assembly process and hence the production of infectious DENV. SFV785 and derivative compounds could be useful biochemical probes to explore the DENV lifecycle and could also represent a new class of anti-virals.


Antimicrobial Agents and Chemotherapy | 2010

Inhibition of Hepatitis C Virus Replication by a Specific Inhibitor of Serine-Arginine-Rich Protein Kinase

Yuko Karakama; Naoya Sakamoto; Yasuhiro Itsui; Mina Nakagawa; Megumi Tasaka-Fujita; Yuki Nishimura-Sakurai; Sei Kakinuma; Masaya Oooka; Seishin Azuma; Kiichiro Tsuchiya; Hiroshi Onogi; Masatoshi Hagiwara; Mamoru Watanabe

ABSTRACT Splicing of messenger RNAs is regulated by site-specific binding of members of the serine-arginine-rich (SR) protein family, and SR protein kinases (SRPK) 1 and 2 regulate overall activity of the SR proteins by phosphorylation of their RS domains. We have reported that specifically designed SRPK inhibitors suppressed effectively several DNA and RNA viruses in vitro and in vivo. Here, we show that an SRPK inhibitor, SRPIN340, suppressed in a dose-dependent fashion expression of a hepatitis C virus (HCV) subgenomic replicon and replication of the HCV-JFH1 clone in vitro. The inhibitory effects were not associated with antiproliferative or nonspecific cytotoxic effects on the host cells. Overexpression of SRPK1 or SRPK2 resulted in augmentation of HCV replication, while small interfering RNA (siRNA) knockdown of the SRPKs suppressed HCV replication significantly. Immunocytochemistry showed that SRPKs and the HCV core and NS5A proteins colocalized to some extent in the perinuclear area. Our results demonstrate that SRPKs are host factors essential for HCV replication and that functional inhibitors of these kinases may constitute a new class of antiviral agents against HCV infection.


Clinical Cancer Research | 2018

CDK9 Inhibitor FIT-039 Suppresses Viral Oncogenes E6 and E7 and Has a Therapeutic Effect on HPV-Induced Neoplasia

Masahiko Ajiro; Hiroyuki Sakai; Hiroshi Onogi; Makoto Yamamoto; Eriko Sumi; Teruo Sawada; Takashi Nomura; Kenji Kabashima; Takamitsu Hosoya; Masatoshi Hagiwara

Purpose: Cervical cancer is one of the leading causes of cancer-related deaths among women worldwide. The purpose of this study is to assess the therapeutic effect of the newly developed cyclin-dependent kinase 9 (CDK9) inhibitor FIT-039 on cervical neoplasia induced by human papillomavirus (HPV) infection. Experimental Design: We examined FIT-039 for its effect on HPV gene expression in HPV+ cervical cancer cells. Primary keratinocytes monolayer and organotypic raft culture models were used to evaluate HPV viral replication and cervical intraepithelial neoplasia (CIN) phenotypes. Preclinical pharmacokinetics and toxicity tests for FIT-039 were also conducted. Finally, the anti-HPV effect of FIT-039 was further examined in vivo, using HPV+ cervical cancer xenografts. Results: FIT-039 inhibits HPV replication and expression of E6 and E7 viral oncogenes, restoring tumor suppressors p53 and pRb in HPV+ cervical cancer cells. The therapeutic effect of FIT-039 was demonstrated in CIN model of an organotypic raft culture, where FIT-039 suppressed HPV18-induced dysplasia/hyperproliferation with reduction in viral load. FIT-039 also repressed growth of HPV16+, but not HPV− cervical cancer xenografts without any significant adverse effects. Safety and pharmacokinetics of FIT-039 were confirmed for systemic and topical routes. Conclusions: The CDK9 inhibitor FIT-039 showed potent anti-HPV activity without significant toxicity in preclinical studies. Thus, FIT-039 is expected to be a novel therapeutic for CIN to prevent cervical cancer. Clin Cancer Res; 24(18); 4518–28. ©2018 AACR.

Collaboration


Dive into the Hiroshi Onogi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takamitsu Hosoya

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Isao Kii

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshiyuki Hiramatsu

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Shibuya

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Jun Koizumi

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Makoto Yamamoto

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Nobutoshi Ito

Tokyo Medical and Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge